Skip to main content

Advertisement

Log in

Antioxidant activities of Celosia argentea Linn and Gongronema latifolium Benth and the antihyperlipidemic effect of the vegetable supplemented diets on fat induced hyperlipidemic rats

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The present study investigated the antioxidant activities and antihyperlipidemic effects of varying levels of inclusion of processed green leafy vegetables (Celosia argentea and Gongronema latifolium) on high fat diet-induced hyperlipidemic rats. The antioxidant assay revealed that the unblanched C. argentea had higher total phenolic content, total flavonoid content, DPPH·, ABTS·+, OH· and NO· radical scavenging activities than the blanched Celosia argentea. Conversely, the blanched G. latifolium had higher antioxidant activities than the unblanched G. latifolium. Seventy-five (75) male albino rats of average weight 180 ± 20 g were divided into fifteen (15) groups of five (5) animals each. The rats were fed for 4 weeks on diets specially formulated to contain 5%, 10% and 15% by weight of the leaves of the blanched and unblanched vegetables. lipid profile (TC: total cholesterol, TG: triglycerides, LDL: low density lipoproteins, VLDL: very low density lipoproteins and HDL: high density lipoproteins) and oxidative stress indicators were evaluated. The serum TC, TG, LDL and VLDL which significantly increased (p < 0.0001) in hyperlipidemic control group were significantly decreased (p < 0.05, 0.0001) at all levels of inclusion of the vegetal diets. HDL also increased significantly (p < 0.0001) in groups fed with the vegetal diets. In addition, glutathione peroxidase, reduced glutathione, catalase and superoxide dismutase activities significantly increased (p < 0.05, 0.0001); while TBARS significantly decreased at all levels of inclusion of the vegetal diets. These results suggested that incorporation of C. argentea and G. latifolium into the diet most especially blanched C. argentea and unblanched G. latifolium may have therapeutic potentials in the management of hyperlipidemia and associated complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Nirosha, M. Divya, S. Vamsi, S. Muhemmed, A Review of hyperlipidemia. IJNTPS 4(5), 2277–2782 (2014)

    Google Scholar 

  2. N. Verma, Introduction to hyperlipidemia and its treatment: a review. Int. J. Curr. Pharm. Res. 9(1), 6–14 (2017)

    Article  CAS  Google Scholar 

  3. B. Enkhmaa, P. Surampudi, E. Anuurad, L. Berglund, Lifestyle changes: effect of diet, exercise, functional food, and obesity treatment on lipids and lipoproteins (MDText.com, Inc., South Dartmouth, 2018)

    Google Scholar 

  4. G. Michas, G. Karvelas, A. Trikas, Cardiovascular disease in Greece; the latest evidence on risk factors. HJC 60, 271–275 (2018)

    PubMed  Google Scholar 

  5. E. Adekanle, U. Omozokpia, Antioxidant potentials of Gongronema latifolium (Utazi) leaf extracts. NISEB 27(2), 85–88 (2015)

    CAS  Google Scholar 

  6. G.F. Shattat, A review on hyperlipidemia: types, treatments and new drug targets. Biomed. Pharmacol. J. (2015). https://doi.org/10.13005/bpj/504

    Article  Google Scholar 

  7. A.O. Ademosun, G. Oboh, Inhibition of Acetylcholinesterase activity and Fe2+ induced lipid peroxidation in rat brain in vitro by some citrus fruit juices. J. Med. Food 15(9), 1–7 (2012)

    Google Scholar 

  8. C.L. Kanu, O. Owoeye, I.O. Imosemi, A.O. Malomo, A review of the multifaceted usefulness of Celosia argentea Linn. Eur. J. Pharm. Med. Res. 2(10), 72–79 (2017)

    Google Scholar 

  9. B.O. Ajioye, B.E. Oyinloye, O.E. Agboinghale, S.A. Onikanni, E. Asogwa, A.P. Kappo, Antihyperglycaemia and related gene expressions of aqueous extract of Gongronema latifolium leaf in alloxan-induced diabetic rats. J. Pharm. Biol. (2019). https://doi.org/10.1080/13880209.2019.1657907

    Article  Google Scholar 

  10. P.G. Waterman, S. Mole, Analysis of phenolic plant metabolites (Blackwell Scientific Publications, Oxford, 1994), p. 238

    Google Scholar 

  11. A.L. Meda, C.E. Lamien, M. Romito, J.F. Millogo, Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 91(3), 571–577 (2005)

    Article  CAS  Google Scholar 

  12. W. Brand-Williams, M. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 28, 25–30 (1995)

    Article  CAS  Google Scholar 

  13. J.M. Awika, L.W. Rooney, X. Wu, R.L. Prior, L. Cisneros-Zevallos, Screening methods to measure antioxidant activity of Sorghum (Sorghum ialmatei) and Sorghum product. J. Agric. Food Chem. 51, 6657 (2003)

    Article  CAS  Google Scholar 

  14. B. Halliwell, J.M. Gutteridge, Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219, 1–14 (1984)

    Article  CAS  Google Scholar 

  15. B. Sangameswaran, B.R. Balakrishnan, C. Deshraj, B. Jayakar, In vitro Antioxidant activity of Thespesia Lampas Dalz and Gibs. Pak. J. Pharm. Sci. 22, 368–372 (2009)

    CAS  PubMed  Google Scholar 

  16. C. Ekeleme-Egedigwe, I.I. Ijeh, P.N. Okafor, Modulatory effects of dietary supplementation by Vernonia amygdalina on high-fat-diet-induced obesity in wistar rats. Acta Sci. Pol. Technol. Aliment. 16(4), 431–442 (2017)

    CAS  PubMed  Google Scholar 

  17. P. Trinder, A colorimetric method for the determination of glucose. Ann. Clin. Biochem. 6, 24–26 (1969)

    Article  CAS  Google Scholar 

  18. N.W. Tietz, Clinical guide to laboratory test, 2nd edn. (W.B. Saunders Company, Philadelphia, 1990), pp. 554–556

    Google Scholar 

  19. T.H. Grove, Effect of reagent pH on determination of high density lipoprotein cholesterol by precipitation with sodium phosphotungstate-magnesium. Clin. Chem. 25, 560–564 (1979)

    Article  CAS  Google Scholar 

  20. W.T. Friedewald, R.I. Levy, D.S. Fredrickson, Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972)

    Article  CAS  Google Scholar 

  21. R. Varshney, R.K. Kale, Effects of calmodulin antagonists on radiation-induced lipid peroxidation in microsomes. Int. J. Radiat. Biol. 58, 733–743 (1990)

    Article  CAS  Google Scholar 

  22. E. Beutler, O. Duron, B.M. Kelly, Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61, 882–888 (1963)

    CAS  PubMed  Google Scholar 

  23. P. Kakkar, B. Das, P.N. Viswanathan, A modified spectrophotometric assay of superoxide dismutase. Indian J. Biochem. Biophys. 21, 130–132 (1984)

    CAS  PubMed  Google Scholar 

  24. R. Haque, B. Bin-Hafeez, S. Parvez, S. Pandey, I. Sayeed, M. Ali, S. Raisuddin, Aqueous extract of walnut (Juglans regia L.) protects mice against cyclophosphamide induced biochemical toxicity. Hum. Exp. Toxicol. 22, 473–480 (2003)

    Article  CAS  Google Scholar 

  25. F.A. Ahmed, R.F. Ali, Bioactive compounds and antioxidant activity of fresh processed while cauliflower. BioMed Res. Int. (2013). https://doi.org/10.1155/2013/367819

    Article  PubMed  PubMed Central  Google Scholar 

  26. N. Turkmen, F. Sari, Y.S. Velioglu, The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem. 93(4), 713–718 (2005)

    Article  CAS  Google Scholar 

  27. R. Ferracane, N. Pellegrini, A. Visconti, G. Graziani, E. Chiavaro, C. Miglio, V. Fogliano, Effects of different cooking methods on antioxidant profile, antioxidant capacity, and physical characteristics of artichoke. J. Agric. Food Chem. 56, 8601–8608 (2008)

    Article  CAS  Google Scholar 

  28. R.T. Fuhrman, M. Aviram, Effect of storage temperature and duration on physiological responses of pomegranate fruit. Ind. Crops Prod. 47, 300–309 (2002)

    Google Scholar 

  29. S.O. Nwozo, B.J. Oso, B.E. Oyinloye, Effect of heat on antioxidant activity of some tropical leafy vegetables. NJBAS 23(2), 93–101 (2015)

    Google Scholar 

  30. E. Sikora, E. Cieślik, T. Leszczyńska, A. Filipiak- Florkiewicz, P.M. Pisulewski, The antioxidant activity of selected cruciferous vegetables subjected to aquathermal processing. Food Chem. 107(1), 55–59 (2008)

    Article  CAS  Google Scholar 

  31. S.A. Adefegha, G. Oboh, Cooking enhances the antioxidant properties of some tropical green leafy vegetables. Afr. J. Biotechnol. 10(4), 632–639 (2011)

    CAS  Google Scholar 

  32. F.J. Morales, M.B. Babbel, Antiradical efficiency of Maillard reaction mixtures in a hydrophilic media. J. Agric. Food Sci. 50, 2788–2792 (2002)

    Article  CAS  Google Scholar 

  33. A. Ansarullah, R.N. Jadeja, M.C. Thounaojam, V. Patel, R.V. Devkar, A.V. Ramachandran, Antihyperlipidemic potential of a polyherbal preparation on triton WR 1339 (Tyloxapol) induced hyperlipidemia: a comparison with lovastatin. Int. J. Green Pharm. 3(2), 119–124 (2009)

    Article  Google Scholar 

  34. C.I. Ezekwe, O. Obidoa, Biochemical effect of Vernonia amygladina on rats liver microsomes. NJBMB 16, 1745–1798 (2001)

    Google Scholar 

  35. C.E. Ugwu, E.O. Alumana, L.U. Ezeanyika, Comparative effects of the leaves of Gongronema latifolium and Vernonia amygladina incorporated diets on the lipid profiles of rats. Biokemistri 21(2), 59–65 (2009)

    Google Scholar 

  36. N.H. Ugochukwu, N.E. Babady, M. Cobourne, S.R. Gasset, The effect of Gongronema latifolium leaf extract on serum lipid profile and oxidative stress of hepatocytes of diabetic rats. J. Biosci. 28, 1–5 (2003)

    Article  CAS  Google Scholar 

  37. J.R. Nofer, B. Kehrel, M. Fobker, D.B. Levkau, G. Assmann, V. Eckardstein, HDL and artheriosclerosis: beyond reverse cholesterol transport. Atherosclerosis 161, 1–16 (2002)

    Article  CAS  Google Scholar 

  38. A. Thayyil, A.K. Muthu, M. Ibrahim, Evaluation of in vivo antioxidant and lipid peroxidation effect of various extracts from whole plant of Pavetta indica (linn) in rat fed with high fat diet. IJARSET 5(1), 11–16 (2017)

    Google Scholar 

  39. J.P. De La Cruz, L. Quintero, M.A. Villalobos, F. de La Cuesta, Lipid peroxidation and glutathione system in hyperlipedemic rabbits influence of olive oil administration. Biochim. Biophys. Acta 1485, 36 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sule O. Salawu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adegbenro, A.A., Salawu, S.O. & Akindahunsi, A.A. Antioxidant activities of Celosia argentea Linn and Gongronema latifolium Benth and the antihyperlipidemic effect of the vegetable supplemented diets on fat induced hyperlipidemic rats. Food Measure 15, 425–436 (2021). https://doi.org/10.1007/s11694-020-00612-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00612-z

Keywords

Navigation