Skip to main content
Log in

Application of high-GABA producing Lactobacillus plantarum isolated from traditional cabbage pickle in the production of functional fermented whey-based formulate

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study, a fermented whey-based formulate with enhanced levels of gamma aminobutyric acid (GABA) was produced by using a selected lactic acid bacteria isolated from traditional cabbage pickle. 16S rRNA gene sequencing resulted in identification of high GABA-producing isolate as Lactobacillus plantarum which was used as single or co-culture with Lactococcus lactis subsp. lactis (a proteolytic strain from the microbial bank). The isolated L. plantarum showed higher proteolytic, acidification and GABA-producing activity in cheese whey compared to Lc. lactis Subsp. lactis. However, the highest concentration of GABA (365.6 mg/100 mL) was found in the samples fermented using co-cultures of these strains. Moreover, addition of soy protein hydrolysate (SPH) to whey resulted in a significant enhancement in GABA concentration in the final product upon fermentation. Moreover, in the co-cultured sample containing higher amount of SPH, the lower fermentation time was observed. The results of this study showed that L. plantarum isolated from cabbage pickle is a good candidate to be used as p starter culture to manufacture a novel functional whey formulate enriched with GABA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Li, Y. Cao, Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39, 1107–1116 (2010)

    Article  CAS  Google Scholar 

  2. S. Sokovic Bajic, J. Djokic, M. Dinic, K. Veljovic, N. Golic, S. Mihajlovic, M. Tolinacki, GABA-producing natural dairy isolate from artisanal zlatar cheese attenuates gut inflammation and strengthens gut epithelial barrier in vitro. Front. Microbiol. 10, 1–13 (2019)

    Article  Google Scholar 

  3. N. Xu, L. Wei, J. Liu, Biotechnological advances and perspectives of gamma-aminobutyric acid production. World J. Microbiol. Biotechnol. 33(3), 64 (2017). https://doi.org/10.1007/s11274-017-2234-5

    Article  CAS  PubMed  Google Scholar 

  4. R. Di Cagno, F. Mazzacane, C.G. Rizzello, M. De Angelis, G. Giuliani, M. Meloni, B. De Servi, M. Gobbetti, Synthesis of γ-aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: functional grape must beverage and dermatological applications. Appl. Microbiol. Biotechnol. 86, 731–741 (2010)

    Article  Google Scholar 

  5. L. Diez-Gutiérrez, L. San Vicente, L.J.R. Barrón, M. del Carmen Villarán, M. Chávarri, Gamma-aminobutyric acid and probiotics: multiple health benefits and their future in the global functional food and nutraceuticals market. J. Funct. Foods. 64, 103669 (2020)

    Article  Google Scholar 

  6. K. Inoue, T. Shirai, H. Ochiai, M. Kasao, K. Hayakawa, M. Kimura, H. Sansawa, Blood-pressure-lowering effect of a novel fermented milk containing γ-aminobutyric acid (GABA) in mild hypertensives. Eur. J. Clin. Nutr. 57, 490–495 (2003)

    Article  CAS  Google Scholar 

  7. M. Shimada, T. Hasegawa, C. Nishimura, H. Kan, T. Kanno, T. Nakamura, T. Matsubayashi, Anti-hypertensive effect of g -aminobutyric acid (GABA )—rich Chlorella on high-normal blood pressure and borderline hypertension in placebo-controlled double blind study. Clin. Exp. Hypertens. 31, 342–354 (2009)

    Article  CAS  Google Scholar 

  8. J. Tsai, Y. Lin, B. Pan, T. Chen, Antihypertensive peptides and γ-aminobutyric acid from prozyme 6 facilitated lactic acid bacteria fermentation of soymilk. Process Biochem. 41, 1282–1288 (2006)

    Article  CAS  Google Scholar 

  9. K.B. Park, S.H. Oh, Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract. Bioresour. Technol. 98(8), 1675–1679 (2007)

    Article  CAS  Google Scholar 

  10. M.C. Kook, S.C. Cho, Production of GABA (gamma amino butyric acid) by lactic acid bacteria. Food Sci. Anim. Res. 33(3), 377–389 (2013)

    Google Scholar 

  11. I.K. Lappa, A. Papadaki, V. Kachrimanidou, Cheese whey processing: integrated biorefinery concepts and emerging food applications. Foods 8(8), 347 (2019). https://doi.org/10.3390/foods8080347

    Article  CAS  PubMed Central  Google Scholar 

  12. P. Jelen, Whey-based functional beverages, in Functional and speciality beverage technology, ed. by P. Paquin (Woodhead Publishing, Cambridge, 2009), pp. 259–280

    Google Scholar 

  13. B. Özer, H. Kirmaci, Functional milks and dairy beverages. Int. J. Dairy Technol. 63, 1–15 (2010)

    Article  Google Scholar 

  14. S. Woraharn, N. Lailerd, B.S. Sivamaruthi, W. Wangcharoen, S. Sirisattha, C. Chaiyasut, Screening and kinetics of glutaminase and glutamate decarboxylase producing lactic acid bacteria from fermented Thai foods. Food Sci. Technol. 34(4), 793–799 (2014)

    Article  Google Scholar 

  15. S. Maris, M. Meira, V.E. Helfer, R.V. Velho, F.C. Lopes, A. Brandelli, Probiotic potential of Lactobacillus spp. isolated from Brazilian regional ovine cheese. J. Dairy Res. 79(1), 119–127 (2012)

    Article  Google Scholar 

  16. A. Cebeci, C. Gürakan, Properties of potential probiotic Lactobacillus plantarum strains. Food Microbiol. 20, 511–518 (2003)

    Article  Google Scholar 

  17. CLSI (Clinical and Laboratory Standards Institute), Performance standard for antimicrobial susceptibility testing, 21th edn. CLSI document M100–S20-U (CLSI, Wayne, 2012)

    Google Scholar 

  18. I. Fguiri, M. Ziadi, M. Atigui, N. Ayeb, S. Arroum, M. Assadi, T. Khorchani, Isolation and characterisation of lactic acid bacteria strains from raw camel milk for potential use in the production of fermented Tunisian dairy products. Int. J. Dairy technol. 69(1), 103–113 (2016)

    Article  CAS  Google Scholar 

  19. M. Moslehishad, S. Mirdamadi, M.R. Ehsani, H. Ezzatpanah, A.A. Moosavi-Movahedi, The proteolytic activity of selected lactic acid bacteria in fermenting cow’s and camel’s milk and the resultant sensory characteristics of the products. Int. J. Dairy Technol. 66, 279–285 (2013)

    Article  Google Scholar 

  20. AOAC, Official Methods of Analysis, vol. 2, 17th edn. (AOAC, Washington, DC, 2002)

    Google Scholar 

  21. F.C. Church, H.E. Swaisgood, D.H. Porter, G.L. Catignani, Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 66(6), 1219–1227 (1983)

    Article  CAS  Google Scholar 

  22. M. Shakerian, S.H. Razavi, S.A. Ziai, F. Khodaiyan, M.S. Yarmand, A. Moayedi, Proteolytic and ACE-inhibitory activities of probiotic yogurt containing non-viable bacteria as affected by different levels of fat, inulin and starter culture. J. Food Sci. Technol. 52(4), 2428–2433 (2015)

    Article  CAS  Google Scholar 

  23. S. Woraharn, N. Lailerd, B.S. Sivamaruthi, W. Wangcharoen, S. Sirisattha, S. Peerajan, C. Chaiyasut, Evaluation of factors that influence the L-glutamic and γ-aminobutyric acid production during Hericium erinaceus fermentation by lactic acid bacteria. CyTA-J. Food. 14(1), 47–54 (2016)

    Article  CAS  Google Scholar 

  24. S. Siragusa, M. De Angelis, R. Di Cagno, C.G. Rizzello, R. Coda, M. Gobbetti, Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl. Environ. Microbiol. 73(22), 7283–7290 (2007)

    Article  CAS  Google Scholar 

  25. F. Demirbaş, H. İspirli, A.A. Kurnaz, M.T. Yilmaz, E. Dertli, Antimicrobial and functional properties of lactic acid bacteria isolated from sourdoughs. LWT-Food Sci. Technol. 79, 361–366 (2017)

    Article  Google Scholar 

  26. E. Renes, D. Linares, L. González, J. Fresno, M. Tornadijo, C. Stanton, Production of conjugated linoleic acid and gamma-aminobutyric acid by autochthonous lactic acid bacteria and detection of the genes involved. J. Funct. Foods. 34, 340–346 (2017)

    Article  CAS  Google Scholar 

  27. N. Tajabadi, A. Ebrahimpour, A. Baradaran, R.A. Rahim, N.A. Mahyudin, M.Y.A. Manap, F.A. Bakar, N. Saari, Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees. Molecules 20, 6654–6669 (2015)

    Article  CAS  Google Scholar 

  28. C. Sanchart, O. Rattanaporn, D. Haltrich, P. Phukpattaranont, S. Maneerat, Technological and safety properties of newly isolated GABA-producing Lactobacillus futsaii strains. J. Appl. Microbiol. 121(3), 734–745 (2016)

    Article  CAS  Google Scholar 

  29. M.J. Kim, K.S. Kim, Isolation and Identification of γ-Aminobutyric acid (GABA)—producing lactic acid bacteria from Kimchi. J. Korean Soc. Appl. Biol. Chem. 55, 777–785 (2012)

    Article  CAS  Google Scholar 

  30. C.F. Liu, Y.T. Tung, C.L. Wu, B.H. Lee, W.H. Hsu, T.M. Pan, Antihypertensive effects of Lactobacillus-fermented milk orally administered to spontaneously hypertensive rats. J. Agric. Food Chem. 59(9), 4537–4543 (2011)

    Article  CAS  Google Scholar 

  31. J.S. Zhou, C. Pillidge, P. Gopal, H. Gill, Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int. J. Food Microbiol. 98(2), 211–217 (2005)

    Article  CAS  Google Scholar 

  32. S. Mathur, R. Singh, Antibiotic resistance in food lactic acid bacteria—a review. Int. J. Food Microbiol. 105, 281–295 (2005)

    Article  CAS  Google Scholar 

  33. K. Savijoki, H. Ingmer, P. Varmanen, Proteolytic systems of lactic acid bacteria. Appl. Microbiol Biotechnol. 71, 394–406 (2006)

    Article  CAS  Google Scholar 

  34. J.C. Vuillemard, J. Amiot, S. Gauthier, Evaluation de l’activite proteolytique de bacteries lactiques 310 par une methode de diffusion sur plaque. Microbiol. Aliments Nutr. 3, 327–332 (1986)

    Google Scholar 

  35. T. Berhe, R. Ipsen, E. Seifu, M.Y. Kurtu, M. Eshetu, E.B. Hansen, Comparison of the acidification activities of commercial starter cultures in camel and bovine milk. LWT Food Sci. Technol. 89, 123–127 (2018)

    Article  CAS  Google Scholar 

  36. M. Hidalgo-Morales, V. Robles-Olvera, H.S. García, Lactobacillus reuteri β-galactosidase activity and low milk acidification ability. Can. J. Microbiol. 51(3), 261–267 (2005)

    Article  CAS  Google Scholar 

  37. F. Ciocia, P.L. McSweeney, P. Piraino, E. Parente, Use of dairy and non-dairy Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus strains as adjuncts in cheddar cheese. Dairy Sci. Technol. 93, 623–640 (2013)

    Article  CAS  Google Scholar 

  38. Z. Lu, X. Bie, Y. Jiao, L. Sun, B. Yu, S. Yang, F. Lu, Production of g -aminobutyric acid by Streptococcus salivarius subsp. thermophilus Y2 under submerged fermentation. Amino Acids 34, 473–478 (2008)

    Article  Google Scholar 

  39. Z. Zareie, F. TabatabaeiYazdi, S.A. Mortazavi, Optimization of gamma-aminobutyric acid production in a model system containing soy protein and inulin by Lactobacillus brevis fermentation. J. Food Meas. Charact. 13, 2626–2636 (2019)

    Article  Google Scholar 

  40. T.T.T. Binh, W.T. Ju, W.J. Jung, R.D. Park, Optimization of γ-amino butyric acid production in a newly isolated Lactobacillus brevis. Biotechnol lett. 36, 93–98 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gorgan University of Agricultural Sciences and Natural Resources (Gorgan, Iran) for the financial support of this study.

Funding

This work was supported by Gorgan University of Agricultural Sciences and Natural Resources (Gorgan, Iran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Moayedi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimian, E., Moayedi, A., Khomeiri, M. et al. Application of high-GABA producing Lactobacillus plantarum isolated from traditional cabbage pickle in the production of functional fermented whey-based formulate. Food Measure 14, 3408–3416 (2020). https://doi.org/10.1007/s11694-020-00587-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00587-x

Keywords

Navigation