Skip to main content
Log in

Enzymatic preparation and antioxidative activity of hydrolysate from Rice bran protein

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

As a protein-rich resource, rice bran protein has not been developed and utilized effectively. In this study, the optimal condition to prepare hydrolysate from rice bran protein was determined by screening protease and conducting single factor experiments along with response surface methodology. Optimal hydrolysate was prepared to further investigate its chemical (DPPH, ABTS, Fe2+) and cellular antioxidative activity. Finally, its amino acid composition was explored. In the results, alcalase was selected and other parameters were: pH 8.5, enzyme-to-substrate ratio 0.38%, and substrate concentration 6%. It was proved that the hydrolysate was an excellent DPPH (EC50 = 5.647) and ABTS (EC50 = 0.195) scavenger as well as good Fe2+ (EC50 = 1.765) chelator, showing directly proportional relationships with dose. In cellular antioxidant activity (CAA) assay, the CAA value reached 31.76% at the concentration of 1 mg/mL and the increasing use of rice bran protein hydrolysate significantly improved CAA. Amino acid composition analysis showed that the hydrolysate was rich in glutamic acid (13.02%), aspartic acid (6.68%), arginine (3.34%) and many kinds of hydrophobic amino acids which contribute to the antioxidant property. This research revealed the potential application of rice bran protein hydrolysate in natural antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Ham et al., LWT-Food Sci. Technol. 61, 602–608 (2015)

    CAS  Google Scholar 

  2. F. Xin et al., Sci. Total Environ. 711, 135183 (2020)

    CAS  PubMed  Google Scholar 

  3. E. Revilla et al., Food Res. Int. 42, 387–393 (2009)

    CAS  Google Scholar 

  4. M.K. Sharif et al., Crit. Rev. Food Sci. 54, 807–816 (2014)

    CAS  Google Scholar 

  5. T. Wang et al., LWT-Food Sci. Technol. 78, 281–288 (2017)

    CAS  Google Scholar 

  6. C. Uraipong, J. Zhao, Int. J. Food Sci. Technol. 51, 2201–2208 (2016)

    CAS  Google Scholar 

  7. D.J. Mei et al., Adv. Mater. Res. 610–613, 72–80 (2013)

    Google Scholar 

  8. A.A. Qureshi et al., J. Agr. Food Chem. 48, 3130–3140 (2000)

    CAS  Google Scholar 

  9. C. Aguilar-Garcia et al., Food Chem. 102, 1228–1232 (2007)

    CAS  Google Scholar 

  10. T. Akihisa et al., J. Agr. Food Chem. 48, 2313–2319 (2000)

    CAS  Google Scholar 

  11. H.Y. Park et al., Food Funct. 8, 935–943 (2017)

    CAS  PubMed  Google Scholar 

  12. H.Y. Kim et al., J. Med. Food 10, 25–31 (2007)

    CAS  PubMed  Google Scholar 

  13. X. Zha et al., Carbohyd. Polym. 78, 570–575 (2009)

    CAS  Google Scholar 

  14. B.M.W.P. Amarasinghe, N.C. Gangodavilage, Food Bioprod. Processing 82, 54–59 (2004)

    CAS  Google Scholar 

  15. Z. Xu, J.S. Godber, J. Agric. Food Chem. 47, 2724–2728 (1999)

    CAS  PubMed  Google Scholar 

  16. J. Parrado et al., Food Chem. 98, 742–748 (2006)

    CAS  Google Scholar 

  17. S. Phongthai et al., Int. Food Res. J. 24, 25–34 (2017)

    CAS  Google Scholar 

  18. C. Wang et al., Czech J. Food Sci. 33, 283–291 (2016)

    Google Scholar 

  19. M. Sohail et al., Crit. Rev. Food Sci. Nutr. 57, 3771–3780 (2016)

    Google Scholar 

  20. S.W. Han et al., Food Chem. 172, 766–769 (2015)

    CAS  PubMed  Google Scholar 

  21. R. Gnanasambandam, N. Heltiarachchy, J. Food Sci. 60, 1066–1069 (1995)

    CAS  Google Scholar 

  22. H.Y. Park et al., Planta Med. 82, 606–611 (2016)

    CAS  PubMed  Google Scholar 

  23. C. Fabian, Y. Ju, Crit. Rev. Food Sci. 51, 816–827 (2011)

    CAS  Google Scholar 

  24. Y.Q. Liu et al., Crit. Rev. Food Sci. 59, 349–356 (2017)

    Google Scholar 

  25. J.S. Hamada, Cereal Chem. 74, 662–668 (1997)

    CAS  Google Scholar 

  26. S. Phongthai et al., J. Cereal Sci. 70, 146–154 (2016)

    CAS  Google Scholar 

  27. G. Schaafsma, Eur. J. Clin. Nutr. 63, 1161–1168 (2009)

    CAS  PubMed  Google Scholar 

  28. J. Egeaa et al., Redox Biol. 13, 94–162 (2017)

    Google Scholar 

  29. H. Ye et al., Biomacromolecules 20, 2441–2463 (2019)

    CAS  PubMed  Google Scholar 

  30. Y. Yoshida et al., Chem. Phys. Lipids 123, 63–75 (2003)

    CAS  PubMed  Google Scholar 

  31. V. Sindhi et al., J. Pharm. Res. 7, 828–835 (2013)

    CAS  Google Scholar 

  32. A. Hunyadi, Med. Res. Rev. 39, 2505–2533 (2019)

    CAS  PubMed  Google Scholar 

  33. Q.S. Chen et al., Br. J. Pharmacol. 175, 1279–1292 (2018)

    CAS  PubMed  Google Scholar 

  34. J. Ortiz et al., N. Am. J. Aquacult. 74, 224–229 (2012)

    Google Scholar 

  35. J. Britton et al., Appl. Microbiol. Biot. 103, 5957–5974 (2019)

    CAS  Google Scholar 

  36. M.M. Moreira et al., Sci. Total Environ. 634, 831–842 (2018)

    CAS  PubMed  Google Scholar 

  37. M. Hęś et al., Plant Food Hum. Nutr. 74, 255–265 (2019)

    Google Scholar 

  38. S. Thabit et al., PeerJ 6, e5159 (2018)

    PubMed  PubMed Central  Google Scholar 

  39. J. Zhang et al., Eur. Food Res. Technol. 229, 709–719 (2009)

    CAS  Google Scholar 

  40. Q. Zhao et al., Food Chem. 134, 1360–1367 (2012)

    CAS  PubMed  Google Scholar 

  41. Y.Y. Ma et al., Food Chem. 118, 582–588 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. D.X. Jin et al., Food Chem. 204, 427–436 (2016)

    CAS  PubMed  Google Scholar 

  43. J.Y. Miao et al., Food Funct. 9, 6577–6585 (2018)

    CAS  PubMed  Google Scholar 

  44. M.B. Hansen et al., J. Immunol. Methods 119, 203–210 (1989)

    CAS  PubMed  Google Scholar 

  45. Q.H. Yin et al., Cytotechnology 64, 43–51 (2012)

    CAS  PubMed  Google Scholar 

  46. D.Y. Zhou et al., Food Chem. 132, 815–822 (2012)

    CAS  Google Scholar 

  47. B. Wang et al., Food Chem. 138, 1713–1719 (2013)

    CAS  PubMed  Google Scholar 

  48. Y.H. Li et al., Food Chem. 106, 444–450 (2008)

    CAS  Google Scholar 

  49. W.M. Wu et al., Food Chem. 284, 80–89 (2019)

    CAS  PubMed  Google Scholar 

  50. D.L. Qiao et al., Carbohyd. Polym. 76, 422–429 (2009)

    CAS  Google Scholar 

  51. P. Sharma et al., J. Hazard. Mater. 164, 1024–1029 (2009)

    CAS  PubMed  Google Scholar 

  52. H. Liu et al., Phytochem. Anal. 20, 475–483 (2009)

    CAS  PubMed  Google Scholar 

  53. B. Yu et al., Int. J. Food. Sci. Tech. 43, 1143–1151 (2008)

    CAS  Google Scholar 

  54. F. Shahidi, Y. Zhong, J. Funct. Foods 18, 757–781 (2015)

    CAS  Google Scholar 

  55. L. Song et al., Mar. Drugs 6, 607–619 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. C.F. Chi et al., Food Chem. 168, 662–667 (2015)

    CAS  PubMed  Google Scholar 

  57. H.P. Jiang et al., Food Chem. 154, 158–163 (2014)

    CAS  PubMed  Google Scholar 

  58. R.L. Prior et al., J Agric. Food Chem. 53, 4290–4302 (2005)

    CAS  PubMed  Google Scholar 

  59. C. Chi et al., J. Funct. Foods 12, 1–10 (2015)

    Google Scholar 

  60. M. Karaś et al., Acta Scientiarum Polonorum Technol. Aliment. 13, 385 (2014)

    Google Scholar 

  61. D. Zhou et al., J. Sci. Food Agr. 92, 1694–1701 (2012)

    CAS  Google Scholar 

  62. R.H. Liu, J. Finley, J. Agric, Food Chem. 53, 4311–4314 (2005)

    CAS  Google Scholar 

  63. Y. Zhang et al., PLoS One 11, e0167484 (2016)

    PubMed  PubMed Central  Google Scholar 

  64. S. Liu, H. Huang, J. Funct. Foods 18, 1095–1105 (2015)

    CAS  Google Scholar 

  65. A. Abbasi et al., Int. J. Food Sci. Tech. 52, 817–826 (2017)

    CAS  Google Scholar 

  66. L. López-Barrios et al., Food Chem. 203, 417–424 (2016)

    PubMed  Google Scholar 

  67. J. Liu et al., Food Funct. 11, 2535–2542 (2020)

    CAS  PubMed  Google Scholar 

  68. B.H. Sarmadi, A. Ismail, Peptides 31, 1949–1956 (2010)

    CAS  PubMed  Google Scholar 

  69. A.G.P. Samaranayaka, E.C.Y. Li-Chan, J. Funct. Foods 3, 229–254 (2011)

    CAS  Google Scholar 

  70. J.Y. Je et al., Process Biochem. 42, 840–846 (2007)

    CAS  Google Scholar 

  71. Y. Yu et al., Molecules 23, 1189–1204 (2018)

    PubMed Central  Google Scholar 

  72. M.K. Zainol et al., Food Chem. 81, 575–581 (2003)

    CAS  Google Scholar 

  73. H.M. Chen et al., J. Agric. Food Chem. 46, 49–53 (1998)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation was supported by the Open Project Program of China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), the Guangzhou Science and Technology Program Project (No. 201707010415), the natural science foundation of Guangdong province (2020A1515010371), the Guangzhou rural science and technology commissioner project (GZKTP201931), the Guangdong province rural science and technology commissioner project (2018A0132), the Higher Education Teaching Reform Project of Guangdong Province (No. 2016yjgh166), the Educational Reform and Research Project of South China Agricultural University (NO. JG16012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyin Miao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Li, Y., Chen, B. et al. Enzymatic preparation and antioxidative activity of hydrolysate from Rice bran protein. Food Measure 14, 3163–3174 (2020). https://doi.org/10.1007/s11694-020-00563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00563-5

Keywords

Navigation