Skip to main content
Log in

Novel lysozyme–mannooligosaccharide conjugate with improved antimicrobial activity: preparation and characterization

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Lysozyme is a well-known natural antimicrobial agent commonly used in the food industry. However, the lack of antimicrobial activity against Gram-negative bacteria limits its application. In order to extend the antimicrobial spectrum of lysozyme, a lysozyme–mannooligosaccharide (MOS) conjugate was prepared in this study via the Maillard reaction under optimal conditions, i.e., the lysozyme–MOS ratio of 1:7.5, pH 7.5 and reaction duration of 6 days. The prepared conjugate was subjected to a series of assays, including the free amino group content assay, intrinsic fluorescence spectrometry, surface hydrophobicity assay and FT-IR spectrometry. During conjugation, 55.76% of the free amino groups on lysozyme were consumed, suggesting better reactivity of MOS. Both intrinsic fluorescence spectra and surface hydrophobicity index indicated that more hydrophobic residues embedded in lysozyme would be exposed during conjugation, but the conjugation of MOS lowered both parameters, making the lysozyme–MOS conjugate more hydrophilic and soluble. Furthermore, the antimicrobial activity demonstrated that the lysozyme–MOS conjugate possessed improved activity against Gram-negative bacteria, including Escherichia coli and Salmonella enterica, with almost 50% reduction of log CFU, compared to the native lysozyme. The extended antimicrobial spectrum of lysozyme will broaden its applications as a preservative and provide an effective alternative to existing antibiotics in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Wu, Q. Jiang, D. Wu, Y. Hu, S. Chen, T. Ding, X. Ye, D. Liu, J. Chen, Food Chem. 274, 698–709 (2019)

    CAS  PubMed  Google Scholar 

  2. D. Ercan, A. Demirci, Crit. Rev. Biotechnol. 36, 1078–1088 (2016)

    CAS  PubMed  Google Scholar 

  3. J. Liu, N. Wang, Y. Liu, Y. Jin, M. Ma, Poult. Sci. 97, 3992–3999 (2018)

    CAS  PubMed  Google Scholar 

  4. A. Parisien, B. Allain, J. Zhang, R. Mandeville, C.Q. Lan, J. Appl. Microbiol. 104, 1–13 (2008)

    CAS  PubMed  Google Scholar 

  5. Y. Lee, T. Tang, E. Phuah, N.B.M. Alitheen, C. Tan, O. Lai, J. Sci. Food Agric. 97, 1379–1385 (2017)

    CAS  PubMed  Google Scholar 

  6. Z. Liu, Y. Jiao, Y. Wang, C. Zhou, Z. Zhang, Adv. Drug Deliv. Rev. 60, 1650–1662 (2008)

    CAS  PubMed  Google Scholar 

  7. M. Nooshkam, M. Varidi, M. Bashash, Food Chem. 275, 644–660 (2019)

    CAS  PubMed  Google Scholar 

  8. E. Langner, W. Rzeski, Int. J. Food Prop. 17, 344–353 (2014)

    CAS  Google Scholar 

  9. A.M. Hamdani, I.A. Wani, N.A. Bhat, R.A. Siddiqi, Food Chem. 240, 1201–1209 (2018)

    CAS  PubMed  Google Scholar 

  10. M.M. Hashemi, M. Aminlari, M.M. Forouzan, E. Moghimi, M. Tavana, S. Shekarforoush, M.A. Mohammadifar, Pol. J. Food Nutr. Sci. 68, 33–43 (2018)

    CAS  Google Scholar 

  11. M.M. Hashemi, M. Aminlari, M. Moosavinasab, LWT Food Sci. Technol. 57, 594–602 (2014)

    CAS  Google Scholar 

  12. L. Sheng, P. Su, K. Han, J. Chen, A. Cao, Z. Zhang, Y. Lin, M. Ma, Food Hydrocoll. 71, 1–7 (2017)

    CAS  Google Scholar 

  13. S. Seo, S. Karboune, V. Yaylayan, L. L’Hocine, Process Biochem. 47, 297–304 (2012)

    CAS  Google Scholar 

  14. Z. Zheng, Y. Luo, L. Yao, J. Lu, G. Bu, J. Food Sci. Technol. Mysore 51, 3794–3802 (2014)

    CAS  Google Scholar 

  15. B. Zhang, Y. Liu, H. Yang, Q. Yan, S. Yang, Z. Jiang, S. Li, Food Chem. 234, 68–75 (2017)

    CAS  PubMed  Google Scholar 

  16. M.F.A. Chacher, Z. Kamran, U. Ahsan, S. Ahmad, K.C. Koutoulis, H.G.Q.U. Din, O. Cengiz, World Poult. Sci. J. 73, 831–844 (2017)

    Google Scholar 

  17. R. Jahanian, M. Ashnagar, Poult. Sci. 94, 2165–2172 (2015)

    CAS  PubMed  Google Scholar 

  18. J. Liu, Q. Xu, J. Zhang, X. Zhou, F. Lyu, P. Zhao, Y. Ding, Carbohydr. Polym. 130, 398–404 (2015)

    CAS  PubMed  Google Scholar 

  19. R. Liu, Y. Li, B. Zhang, Int. Immunopharmacol. 40, 385–391 (2016)

    CAS  PubMed  Google Scholar 

  20. X. Lu, X. Chen, D. Fu, W. Cong, F. Ouyang, Life Sci. 72, 711–719 (2002)

    CAS  PubMed  Google Scholar 

  21. S. Yan, R. Shi, L. Li, S. Ma, H. Zhang, J. Ye, J. Wang, J. Pan, Q. Wang, X. Jin, X. Liu, Z. Liu, Mol. Nutr. Food Res. 63, 1900521 (2019)

  22. D. Zhu, Q. Yan, Y. Li, J. Liu, H. Liu, Z. Jiang, Nutrients 11, 1705 (2019)

  23. X. Dong, S. Du, Q. Deng, H. Tang, C. Yang, F. Wei, H. Chen, S. Young Quek, A. Zhou, L. Liu, Int. J. Biol. Macromol. 153, 1157–1164 (2019)

  24. B. Zhang, Q. Sun, H. Liu, S. Li, Z. Jiang, LWT Food Sci. Technol. 78, 1–7 (2017)

    CAS  Google Scholar 

  25. G. Ren, H. Sun, J. Guo, J. Fan, G. Li, S. Xu, Food Funct. 10, 3291–3302 (2019)

    CAS  PubMed  Google Scholar 

  26. X. Guo, H. Qiu, X. Deng, X. Mao, X. Guo, C. Xu, J. Zhang, Molecules 24, 3205 (2019)

  27. W. Jian, J. He, Y. Sun, J. Pang, LWT Food Sci. Technol. 69, 358–364 (2016)

    CAS  Google Scholar 

  28. F.C. de Oliveira, J.S. Dos Reis Coimbra, E.B. de Oliveira, A.D. Giraldo Zuniga, E.E. Garcia Rojas, Crit. Rev. Food Sci. 56, 1108–1125 (2016)

    Google Scholar 

  29. Y.G. Guan, S.L. Wang, S.J. Yu, S.M. Yu, Z.G. Zhao, J. Dairy Sci. 95, 590–601 (2012)

    CAS  PubMed  Google Scholar 

  30. M.S. Rao, S.P. Chawla, R. Chander, A. Sharma, Carbohydr. Polym. 83, 714–719 (2011)

    CAS  Google Scholar 

  31. C.M. Oliver, L.D. Melton, R.A. Stanley, Crit. Rev. Food Sci. 46, 337–350 (2006)

    CAS  Google Scholar 

  32. Y. Zeng, X. Zhang, Y. Guan, Y. Sun, J. Food Sci. 76, C398–C403 (2011)

    CAS  PubMed  Google Scholar 

  33. X. Hong, J. Meng, R. Lu, J. Sci. Food Agric. 95, 66–71 (2015)

    CAS  PubMed  Google Scholar 

  34. A. Etxabide, M. Urdanpilleta, I. Gomez-Arriaran, K. de la Caba, P. Guerrero, React. Funct. Polym. 117, 140–146 (2017)

    CAS  Google Scholar 

  35. R. Song, P. Yang, R. Wei, G. Ruan, Molecules 21, 795 (2016)

  36. R. Koshani, M. Aminlari, M. Niakosari, A. Farahnaky, G. Mesbahi, Food Hydrocoll. 47, 69–78 (2015)

    CAS  Google Scholar 

  37. L. Sheng, G. Tang, P. Su, J. Zhang, Q. Xiao, Q. Tong, M. Ma, Carbohydr. Polym. 136, 1332–1337 (2016)

    CAS  PubMed  Google Scholar 

  38. S. Nakamura, Y. Gohya, J.N. Losso, S. Nakai, A. Kato, FEBS Lett. 383, 251–254 (1996)

    CAS  PubMed  Google Scholar 

  39. M. Aminlari, R. Ramezani, F. Jadidi, J. Sci. Food Agric. 85, 2617–2624 (2005)

    CAS  Google Scholar 

  40. S. Chakraborti, T. Chatterjee, P. Joshi, A. Poddar, B. Bhattacharyya, S.P. Singh, V. Gupta, P. Chakrabarti, Langmuir 26, 3506–3513 (2010)

    CAS  PubMed  Google Scholar 

  41. A.C. Bhowal, S. Kundu, Luminescence 33, 267–276 (2018)

    CAS  PubMed  Google Scholar 

  42. K. Takahashi, X.F. Lou, Y. Ishii, M. Hattori, J. Agric. Food Chem. 48, 2044–2049 (2000)

    CAS  PubMed  Google Scholar 

  43. W. Chen, X. Ma, W. Wang, R. Lv, M. Guo, T. Ding, X. Ye, S. Miao, D. Liu, Food Hydrocoll. 95, 298–307 (2019)

    CAS  Google Scholar 

  44. B. Zhang, Y.J. Chi, B. Li, Eur. Food Res. Technol. 238, 129–138 (2014)

    CAS  Google Scholar 

  45. Y. Li, F. Zhong, W. Ji, W. Yokoyama, C.F. Shoemaker, S. Zhu, W. Xia, Food Hydrocoll. 30, 53–60 (2013)

    Google Scholar 

  46. W. Wang, Q. Zhong, Food Hydrocoll. 38, 85–94 (2014)

    CAS  Google Scholar 

  47. F. Gu, J.M. Kim, S. Abbas, X. Zhang, S. Xia, Z. Chen, Food Chem. 120, 505–511 (2010)

    CAS  Google Scholar 

  48. P.K. Srivastava, D. Panwar, K.V.H. Prashanth, M. Kapoor, J. Agric. Food Chem. 65, 2827–2838 (2017)

    CAS  PubMed  Google Scholar 

  49. R. Koshani, M. Aminlari, Int. J. Biol. Macromol. 103, 948–956 (2017)

    CAS  PubMed  Google Scholar 

  50. S. Nakamura, A. Kato, K. Kobayashi, J. Agric. Food Chem. 39, 647–650 (1991)

    CAS  Google Scholar 

  51. H. Xing, V. Yaylayan, J. Agric. Food Chem. 67, 3249–3255 (2019)

    CAS  PubMed  Google Scholar 

  52. S. Amiri, R. Ramezani, M. Aminlari, J. Food Prot. 71, 411–415 (2008)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (No. 31701536), the National Key Research and Development Program of China (No. 2018YFD0901102) and the Student Research Training Program (SRTP) of Henan University of Science and Technology (No. 2018156).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijun Qiu or Bin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Zhao, Y., Wu, Y. et al. Novel lysozyme–mannooligosaccharide conjugate with improved antimicrobial activity: preparation and characterization. Food Measure 14, 2529–2537 (2020). https://doi.org/10.1007/s11694-020-00499-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00499-w

Keywords

Navigation