Skip to main content
Log in

The effect of native and denaturated flaxseed meal extract on physiochemical properties of low fat mayonnaises

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The influence of flaxseed meal extract (FME) in native (FME-N) and denaturated (FME-D) form on the stability, acidity, physico-chemical, textural, rheological and sensory properties of the low-fat mayonnaise was investigated in this work. The oil phase was partially replaced by 5%, 10% and 15% of FME-N/FME-D and compared with a full fat mayonnaise. Denaturation of the FME proteins improved their emulsifying properties. Adding of FME-N/FME-D resulted in decreasing of droplets size and enhancing the stability of all mayonnaise samples, as well as higher L* values of FME mayonnaises. No significant pH differences between the control sample and FME-N variants were observed, whereas FME-D variants showed significantly lower values. All mayonnaise samples exhibited pseudoplastic behavior, decreasing the viscosity and yield stress with increasing FME-N/FME-D content. In conclusion, flaxseed meal extract may be very valuable to the food industry, which could manufacture mayonnaises with low fat content and very healthy flaxseed protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Huang, T. Wang, Z. Han, Y. Meng, X. Lu, Food Hydrocoll. 56, 311 (2016)

    Article  CAS  Google Scholar 

  2. X. Liu, J. Guo, Z.-L. Wan, Y.-Y. Liu, Q.-J. Ruan, X.-Q. Yang, Food Hydrocoll. 77, 168 (2018)

    Article  Google Scholar 

  3. S. Worrasinchai, M. Suphantharika, S. Pinjai, P. Jamnong, Food Hydrocoll. 20, 68 (2006)

    Article  CAS  Google Scholar 

  4. H. Liu, X.M. Xu, S.D. Guo, LWT - Food Sci. Technol. 40, 946 (2007)

    Article  CAS  Google Scholar 

  5. M.J. Ataie, J. Microbiol. Biotechnol. Food Sci. 8, 979 (2019)

    Article  CAS  Google Scholar 

  6. J. Depree, G. Savage, Trends Food Sci. Technol. 12, 157 (2001)

    Article  CAS  Google Scholar 

  7. C. Di Mattia, F. Balestra, G. Sacchetti, L. Neri, D. Mastrocola, P. Pittia, Altered B-cell homeostasis and excess BAFF in human chronic graft-versus-host disease. LWT - Food Sci. Technol. 62, 764–3874 (2015)

    Article  Google Scholar 

  8. N.D. Westcott, A.D. Muir, Phytochem. Rev. 2, 401 (2003)

    Article  CAS  Google Scholar 

  9. K. Prasad, J. Cardiovasc. Pharmacol. 54, 369 (2009)

    Article  CAS  Google Scholar 

  10. D.K. Dev, E. Quensel, Leb. - Wiss. + Technol. = Food Sci. + Technol. (1986)

  11. B.D. Oomah, G. Mazza, W. Cui, Food Res. Int. 27, 355 (1994)

    Article  CAS  Google Scholar 

  12. J. Goa, Scand. J. Clin. Lab. Investig. 5, 218 (1953)

    CAS  Google Scholar 

  13. R.G. Spiro, Methods Enzymol. 8, 3 (1966)

    Article  CAS  Google Scholar 

  14. K.N. Pearce, J.E. Kinsella, J. Agric. Food Chem. 26, 716 (2016)

    Article  CAS  Google Scholar 

  15. D.R. Cameron, M.E. Weber, E.S. Idziak, R.J. Neufeld, D.G. Cooper, J. Agric. Food Chem. 39, 655 (1991)

    Article  CAS  Google Scholar 

  16. K. Yasumatsu, K. Sawada, S. Moritaka, M. Misaki, J. Toda, T. Wada, K. Ishii, Agric. Biol. Chem. 36, 719 (1972)

    Article  Google Scholar 

  17. V.R. Kaufman, N. Garti, Validation of genetic associations with acute GVHD and nonrelapse mortality in DISCOVeRY-BMT. Int. J. Food Sci. Technol. 19, 255–2341 (2007)

    Article  Google Scholar 

  18. Y. Wang, D. Li, L.-J. Wang, S.-J. Li, B. Adhikari, Carbohydr. Polym. 81, 128 (2010)

    Article  CAS  Google Scholar 

  19. E. Dickinson, M. Golding, Food Hydrocoll. 11, 13 (1997)

    Article  CAS  Google Scholar 

  20. E.C. Li-Chan, C.-Y. Ma, The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Food Chem. 77, 495–1182 (2002)

    Article  CAS  Google Scholar 

  21. E. Biller, B. Waszkiewicz-Robak, E. Longo, E. Boselli, M. Obiedziński, A. Siwek, M.A. Stachelska, J. Am. Oil Chem. Soc. 95, 337 (2018)

    Article  CAS  Google Scholar 

  22. E. Molina, A. Papadopoulou, D. Ledward, Food Hydrocoll. 15, 263 (2001)

    Article  CAS  Google Scholar 

  23. M. Keerati-u-rai, M. Corredig, J. Agric. Food Chem. 58, 9171 (2010)

    Article  CAS  Google Scholar 

  24. S. Sathivel, P.J. Bechtel, J.K. Babbitt, W. Prinyawiwatkul, M. Patterson, J. Food Sci. 70, E57 (2005)

    Article  CAS  Google Scholar 

  25. G. Bortnowska, J. Balejko, V. Schube, G. Tokarczyk, N. Krzemińska, K. Mojka, Carbohydr. Polym. 111, 624 (2014)

    Article  CAS  Google Scholar 

  26. M. R. Amin, A. E. Elbeltagy, M. Mustafa, and A. H. O. Khalil (2014)

  27. Y.F.M. Kishk, H.E. Elsheshetawy, Ann. Agric. Sci. 58, 213 (2013)

    Article  Google Scholar 

  28. M.-G. Song, S.-H. Cho, J.-Y. Kim, J.-D. Kim, Korean J. Chem. Eng. 19, 425 (2002)

    Article  CAS  Google Scholar 

  29. A. Laca, M.C. Sáenz, B. Paredes, M. Díaz, J. Food Eng. 97, 243 (2010)

    Article  CAS  Google Scholar 

  30. S. Thaiudom, K. Khantarat, Procedia Food Sci. 1, 315 (2011)

    Article  CAS  Google Scholar 

  31. R. Bajaj, N. Singh, A. Kaur, Int. J. Biol. Macromol. 131, 147 (2019)

    Article  CAS  Google Scholar 

  32. C. Chang, J. Li, X. Li, C. Wang, B. Zhou, Y. Su, Y. Yang, LWT - Food Sci. Technol. 82, 8 (2017)

    Article  CAS  Google Scholar 

  33. D.R. Izidoro, A.P. Scheer, M.-R. Sierakowski, C.W.I. Haminiuk, LWT - Food Sci. Technol. 41, 1018 (2008)

    Article  CAS  Google Scholar 

  34. L. Juszczak, T. Fortuna, A. Kośla, Nahrung/Food 47, 232 (2003)

    Article  Google Scholar 

  35. T.M. Ali, S. Waqar, S. Ali, S. Mehboob, A. Hasnain, Starch - Stärke 67, 183 (2015)

    Article  CAS  Google Scholar 

  36. M.H. Alu’datt, T. Rababah, M.N. Alhamad, K. Ereifej, S. Gammoh, S. Kubow, D. Tawalbeh, J. Food Sci. Technol. 54, 1395 (2017)

    Article  Google Scholar 

  37. R. Santipanichwong, M. Suphantharika, Food Hydrocoll. 21, 565 (2007)

    Article  CAS  Google Scholar 

  38. Ł. Łopusiewicz, F. Jędra, M. Mizielińska, Polymers (Basel) 10, 386 (2018)

    Article  Google Scholar 

  39. A. Altunkaya, R.V. Hedegaard, J. Harholt, L. Brimer, V. Gökmen, L.H. Skibsted, Food Funct. 4, 1647 (2013)

    Article  CAS  Google Scholar 

  40. V. Raikos, A. McDonagh, V. Ranawana, G. Duthie, Food Sci. Hum. Wellness 5, 191 (2016)

    Article  Google Scholar 

  41. V.M. Rojas, L.F. da Costa Baptista Marconi, A. Guimarães-Inácio, F.V. Leimann, A. Tanamati, Â.M. Gozzo, R.H.B. Fuchs, M.F. Barreiro, L. Barros, I.C.F.R. Ferreira, A.A.C. Tanamati, O.H. Gonçalves, Food Chem. 274, 220 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Łopusiewicz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozłowska, E., Łopusiewicz, Ł., Mężyńska, M. et al. The effect of native and denaturated flaxseed meal extract on physiochemical properties of low fat mayonnaises. Food Measure 14, 1135–1145 (2020). https://doi.org/10.1007/s11694-019-00363-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00363-6

Keywords

Navigation