Skip to main content

Advertisement

Log in

Nondestructive VIS/NIR spectroscopy estimation of intravitelline vitamin E and cholesterol concentration in hen shell eggs

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Designer hen shell eggs, with enhanced or reduced specific components, are used as part of a healthy diet, and such designer eggs must meet certain standards. A fast, nondestructive technology is required in order to ensure that these standards are met. In this study, we investigated the nondestructive estimation of intravitelline vitamin E and cholesterol concentrations in hen shell eggs using visible and near-infrared (VIS/NIR) spectroscopy. The values estimated using partial least-squares regression (PLSR) models were highly correlated with vitamin E concentration measurements by high-performance liquid chromatography and cholesterol concentration measurements by enzymatic analysis. Wavelength selection with the Martens uncertainty test successfully removed unimportant variables and enhanced the models' accuracy and reliability. However, spectral measurements of separated egg yolks with artificially controlled vitamin E and cholesterol concentrations did not afford accurate predictive models. This result for separated yolks, together with band assignments of PLSR models for hen shell eggs, suggested that VIS/NIR spectroscopy can indirectly estimate vitamin E and cholesterol concentrations in hen shell eggs by using information about other components.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Ishikawa, Proteomic analysis of hen egg for improvement of food quality and functionality of egg products. Nippon Shokuhin Kagaku Kogaku Kaishi 59, 231–235 (2012). https://doi.org/10.3136/nskkk.59.231

    Article  CAS  Google Scholar 

  2. K. Imaizumi, New developments in health and nutritional function promoted by chicken eggs. Nippon Shokuhin Kagaku Kogaku Kaishi 58, 341–345 (2011). https://doi.org/10.3136/nskkk.58.341

    Article  CAS  Google Scholar 

  3. M. Rossi, Y. Nys, M. Anton, M. Bain, B. De Ketelaere, K. De Reu, I. Dunn, J. Gautron, M. Hammershøj, A. Hidalgo, A. Meluzzi, K. Mertens, F. Nau, F. Sirri, Developments in understanding and assessment of egg and egg product quality over the last century. Worlds Poult. Sci. J. 69, 414–429 (2013). https://doi.org/10.1017/S0043933913000408

    Article  Google Scholar 

  4. S.M. Michella, B.T. Slaugh, Producing and marketing a specialty egg. Poult. Sci. 79, 975–976 (2000). https://doi.org/10.1093/ps/79.7.975

    Article  CAS  PubMed  Google Scholar 

  5. P.F. Surai, N.H.C. Sparks, Designer eggs: from improvement of egg composition to functional food. Trends Food Sci. Technol. 12, 7–16 (2001). https://doi.org/10.1016/S0924-2244(01)00048-6

    Article  CAS  Google Scholar 

  6. A.T. Diplock, Antioxidant nutrients and disease prevention: an overview. Am. J. Clin. Nutr. 53, 189Sb–193S (1991). https://doi.org/10.1093/ajcn/53.1.189Sb

    Article  Google Scholar 

  7. S. Leeson, Vitamin requirements: is there basis for re-evaluating dietary specifications? Worlds Poult. Sci. J. 63, 255–266 (2007). https://doi.org/10.1017/S0043933907001444

    Article  Google Scholar 

  8. MEXT, Standard tables of food composition in Japan. (Seventh Revised Version) (2015).

  9. D.J. McNamara, Eggs and heart disease risk: perpetuating the misperception. Am. J. Clin. Nutr. 75, 333–335 (2002). https://doi.org/10.1093/ajcn/75.2.333

    Article  CAS  PubMed  Google Scholar 

  10. K.L. Herron, M.L. Fernandez, Are the current dietary guidelines regarding egg consumption appropriate? J. Nutr. 134, 187–190 (2004). https://doi.org/10.1093/jn/134.1.187

    Article  CAS  PubMed  Google Scholar 

  11. M.L. Fernandez, Dietary cholesterol provided by eggs and plasma lipoproteins in healthy populations. Curr. Opin. Clin. Nutr. Metab. Care 9, 8–12 (2006). https://doi.org/10.1097/01.mco.0000171152.51034.bf

    Article  CAS  PubMed  Google Scholar 

  12. J.Y. Shin, P. Xun, Y. Nakamura, K. He, Egg consumption in relation to risk of cardiovascular disease and diabetes: a systematic review and meta-analysis. Am. J. Clin. Nutr. 98, 146–159 (2013). https://doi.org/10.3945/ajcn.112.051318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M.B. Katan, A.C. Beynen, Characteristics of human hypo- and hyperresponders to dietary cholesterol. Am. J. Epidemiol. 125, 387–399 (1987). https://doi.org/10.1093/oxfordjournals.aje.a114545

    Article  CAS  PubMed  Google Scholar 

  14. K.L. Herron, S. Vega-Lopez, K. Conde, T. Ramjiganesh, N.S. Shachter, M.L. Fernandez, Men classified as hypo- or hyperresponders to dietary cholesterol feeding exhibit differences in lipoprotein metabolism. J. Nutr. 133, 1036–1042 (2003). https://doi.org/10.1093/jn/133.4.1036

    Article  CAS  PubMed  Google Scholar 

  15. K.L. Herron, S. Vega-Lopez, K. Conde, T. Ramjiganesh, S. Roy, N.S. Shachter, M.L. Fernandez, Pre-menopausal women, classified as hypo- or hyper-responders, do not alter their LDL/HDL ratio following a high dietary cholesterol challenge. J. Am. Coll. Nutr. 21, 250–258 (2002). https://doi.org/10.1080/07315724.2002.10719218

    Article  PubMed  Google Scholar 

  16. A.C. Beynen, M.B. Katan, L.F. Van Zutphen, Hypo- and hyperresponders: individual differences in the response of serum cholesterol concentration to changes in diet. Adv. Lipid Res. 22, 115–171 (1987). https://doi.org/10.1016/B978-0-12-024922-0.50008-4

    Article  CAS  PubMed  Google Scholar 

  17. S. Grobas, J. Méndez, B.C. Lopez Bote, B.C. De Blas, G.G. Mateos, Effect of vitamin E and A supplementation on egg yolk alpha-tocopherol concentration. Poult. Sci. 81, 376–381 (2002). https://doi.org/10.1093/ps/81.3.376

    Article  CAS  PubMed  Google Scholar 

  18. H. Kamisoyama, K. Honda, K. Kitaguchi, S. Hasegawa, Transfer of dietary coenzyme Q10 into the egg yolk of laying hens. J. Poult. Sci. 47, 28–33 (2010). https://doi.org/10.2141/jpsa.009037

    Article  CAS  Google Scholar 

  19. N. Abdel-Nour, M. Ngadi, S. Prasher, Y. Karimi, Prediction of egg freshness and albumen quality using visible/near infrared spectroscopy. Food Bioproc. Tech. 4, 731–736 (2011). https://doi.org/10.1007/s11947-009-0265-0

    Article  Google Scholar 

  20. A. Giunchi, A. Berardinelli, L. Ragni, A. Fabbri, F.A. Silaghi, Non-destructive freshness assessment of shell eggs using FT-NIR spectroscopy. J. Food Eng. 89, 142–148 (2008). https://doi.org/10.1016/j.jfoodeng.2008.04.013

    Article  CAS  Google Scholar 

  21. B.J. Kemps, F.R. Bamelis, B. De Ketelaere, K. Mertens, K. Tona, E.M. Decuypere, J.G. De Baerdemaeker, Visible transmission spectroscopy for the assessment of egg freshness. J. Sci. Food Agric. 86, 1399–1406 (2006). https://doi.org/10.1002/jsfa.2528

    Article  CAS  Google Scholar 

  22. H. Lin, J. Zhao, L. Sun, Q. Chen, F. Zhou, Freshness measurement of eggs using near infrared (NIR) spectroscopy and multivariate data analysis. Innov. Food Sci. Emerg. Technol. 12, 182–186 (2011). https://doi.org/10.1016/j.ifset.2011.01.008

    Article  Google Scholar 

  23. Y. Liu, Y. Ying, A. Ouyang, Y. Li, Measurement of internal quality in chicken eggs using visible transmittance spectroscopy technology. Food Control 18, 18–22 (2007). https://doi.org/10.1016/j.foodcont.2005.07.011

    Article  Google Scholar 

  24. J. Zhao, H. Lin, Q. Chen, X. Huang, Z. Sun, F. Zhou, Identification of egg’s freshness using NIR and support vector data description. J. Food Eng. 98, 408–414 (2010). https://doi.org/10.1016/j.jfoodeng.2010.01.018

    Article  Google Scholar 

  25. Y. Usui, K. Nakano, J. Mizutani, Studies on nondestructive detection of abnormal eggs (part 2)—the detection of blood spots in white-shelled eggs using visible spectroscopy. Nogyo Shisetsu 36, 11–16 (2005). https://doi.org/10.11449/sasj1971.36.11

    Article  Google Scholar 

  26. Y. Usui, K. Nakano, M. Saitou, Studies on nondestructive detection of abnormal eggs (part 3)—the detection of blood spots in brown-shelled eggs using visible spectroscopy. Nogyo Shisetsu 36, 209–214 (2006). https://doi.org/10.11449/sasj1971.36.209

    Article  Google Scholar 

  27. K. Nakano, J. Mizutani, Y. Ohtsuka, Studies on nondestructive detection of abnormal eggs (part 1)—detection of blood spots in eggs using image processing. Nogyo Shisetsu 29, 117–123 (1998). https://doi.org/10.11449/sasj1971.29.117

    Article  Google Scholar 

  28. B. De Ketelaere, F. Bamelis, B. Kemps, E. Decuypere, J. De Baerdemaeker, Non-destructive measurements of the egg quality. Worlds Poult. Sci. J. 60, 289–302 (2004). https://doi.org/10.1079/WPS200417

    Article  Google Scholar 

  29. Q. Zhao, X. Lv, Y. Jia, Y. Chen, G. Xu, L. Qu, Rapid determination of the fat, moisture, and protein contents in homogenized chicken eggs based on near-infrared reflectance spectroscopy. Poult. Sci. 97, 2239–2245 (2018). https://doi.org/10.3382/ps/pey070

    Article  CAS  PubMed  Google Scholar 

  30. R.L. Wehling, M.M. Pierce, G.W. Froning, Determination of moisture, fat and protein in spray-dried whole egg by near infrared reflectance spectroscopy. J. Food Sci. 53, 1355–1359 (1988). https://doi.org/10.1111/j.1365-2621.1988.tb09276.x

    Article  Google Scholar 

  31. A. Lucas, D. Andueza, E. Rock, B. Martin, Prediction of dry matter, fat, pH, vitamins, minerals, carotenoids, total antioxidant capacity, and color in fresh and freeze-dried cheeses by visible-near-infrared reflectance spectroscopy. J. Agric. Food Chem. 56, 6801–6808 (2008). https://doi.org/10.1021/jf800615a

    Article  CAS  PubMed  Google Scholar 

  32. I. González-Martín, J.M. Bustamante-Rangel, M.M. Delgado-Zamarreño, Near infrared spectroscopy (NIRS) reflectance technology for determination of tocopherols in animal feeds. Anal. Chim. Acta 558, 132–136 (2006). https://doi.org/10.1016/j.aca.2005.10.085

    Article  CAS  Google Scholar 

  33. I. González-Martín, J.M. Hernández-Hierro, M. Bustamante-Rangel, N. Barros-Ferreiro, Near-infrared spectroscopy (NIRS) reflectance technology for the determination of tocopherols in alfalfa. Anal. Bioanal. Chem. 386, 1553–1558 (2006). https://doi.org/10.1007/s00216-006-0666-0

    Article  CAS  PubMed  Google Scholar 

  34. S. Kuroki, T. Kanoo, H. Itoh, Y. Ohkawa, H. Kamisoyama, Nondestructive measurement of yolk viscosity in lightly heated chicken shell eggs. J. Food Eng. 205, 18–24 (2017). https://doi.org/10.1016/j.jfoodeng.2017.02.030

    Article  CAS  Google Scholar 

  35. A. Hanslmeier, Water in the Universe. Astrophysics and Space Science Library (Springer Netherlands, 2010), pp. 242.

  36. S. Šašić, Y. Ozaki, Short-wave near-infrared spectroscopy of biological fluids. 1. Quantitative analysis of fat, protein, and lactose in raw milk by partial least-squares regression and band assignment. Anal. Chem. 73, 64–71 (2001). https://doi.org/10.1021/ac000469c

    Article  CAS  PubMed  Google Scholar 

  37. M. Taniguchi, J.S. Lindsey, Database of absorption and fluorescence spectra of %3e 300 common compounds for use in PhotochemCAD. Photochem. Photobiol. 94, 290–327 (2018). https://doi.org/10.1111/php.12860

    Article  CAS  PubMed  Google Scholar 

  38. K. Mertens, I. Vaesen, J. Loffel, B. Kemps, B. Kamers, C. Perianu, J. Zoons, P. Darius, E. Decuypere, J. De Baerdemaeker, B. De Ketelaere, The transmission color value: A novel egg quality measure for recording shell color used for monitoring the stress and health status of a brown layer flock. Poult. Sci. 89, 609–617 (2010). https://doi.org/10.3382/ps.2009-00261

    Article  CAS  PubMed  Google Scholar 

  39. B.G. Osborne, T. Fearn, Near Infrared Spectroscopy in Food Analysis (Wiley, Longman Scientific & Technical, 1986)

    Google Scholar 

  40. H. Abe, Estimation of heat capacity and properties of water by spectrum decomposition of the second overtone band of OH stretching vibration. J. Near Infrared Spectrosc. 12, 45–54 (2004). https://doi.org/10.1255/jnirs.409

    Article  CAS  Google Scholar 

  41. I.V. Kovalenko, G.R. Rippke, C.R. Hurburgh, Determination of amino acid composition of soybeans (Glycine max) by near-infrared spectroscopy. J. Agric. Food Chem. 54, 3485–3491 (2006). https://doi.org/10.1021/jf052570u

    Article  CAS  PubMed  Google Scholar 

  42. M.W. Davey, W. Saeys, E. Hof, H. Ramon, R.L. Swennen, J. Keulemans, Application of visible and near-infrared reflectance spectroscopy (Vis/NIRS) to determine carotenoid contents in banana (Musa spp.) fruit pulp. J. Agric. Food Chem. 57, 1742–1751 (2009). https://doi.org/10.1021/Jf803137d

    Article  CAS  PubMed  Google Scholar 

  43. B.J. Kemps, B. De Ketelaere, F.R. Bamelis, K. Mertens, E.M. Decuypere, J.G. De Baerdemaeker, F. Schwägele, Albumen freshness assessment by combining visible near-infrared transmission and low-resolution proton nuclear magnetic resonance spectroscopy. Poult. Sci. 86, 752–759 (2007). https://doi.org/10.1093/ps/86.4.752

    Article  CAS  PubMed  Google Scholar 

  44. S.E. Scheideler, P. Weber, D. Monsalve, Supplemental vitamin E and selenium effects on egg production, egg quality, and egg deposition of α-tocopherol and selenium. J. Appl. Poult. Res. 19, 354–360 (2010). https://doi.org/10.3382/japr.2010-00198

    Article  CAS  Google Scholar 

  45. H. Abe, Y. Yalabe, M. Amari, Non-destructive determination of egg-cholesterol by near infrared (NIR) spectroscopy. Nihon Chikusan Gakkaiho 84, 77–80 (2013). https://doi.org/10.2508/chikusan.84.77

    Article  Google Scholar 

  46. H. Abe, M. Amari. Method for measuring cholesterol contained in chicken egg using non-destructive means. US9372179B2 Jun. 21, 2016 (2016).

  47. D.J. Crockford, E. Holmes, J.C. Lindon, R.S. Plumb, S. Zirah, S.J. Bruce, P. Rainville, C.L. Stumpf, J.K. Nicholson, Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. Anal. Chem. 78, 363–371 (2006). https://doi.org/10.1021/ac051444m

    Article  CAS  PubMed  Google Scholar 

  48. Y. Uwadaira, Y. Sekiyama, A. Ikehata, An examination of the principle of non-destructive flesh firmness measurement of peach fruit by using VIS–NIR spectroscopy. Heliyon 4, e00531 (2018). https://doi.org/10.1016/j.heliyon.2018.e00531

    Article  PubMed  PubMed Central  Google Scholar 

  49. G. Martino, M.N. Haouet, S. Marchetti, L. Grotta, V. Ponzielli, Effect of vitamin E supplementation on egg yolk quality and oxidative stability. Asian J. Agric. Food Sci. 20, 248–255 (2014)

    Google Scholar 

  50. R.G. Elkin, Reducing shell egg cholesterol content. I. Overview, genetic approaches, and nutritional strategies. Worlds Poult. Sci. J. 62, 665–687 (2006). https://doi.org/10.1017/S0043933906001206

    Article  Google Scholar 

  51. R.G. Elkin, Reducing shell egg cholesterol content. II. Review of approaches utilizing non-nutritive dietary factors or pharmacological agents and an examination of emerging strategies. Worlds Poult. Sci. J. 63, 5–32 (2007). https://doi.org/10.1017/S0043933907001249

    Article  Google Scholar 

  52. H.D. Griffin, Manipulation of egg-yolk cholesterol-a physiologists view. Worlds Poult. Sci. J. 48, 101–112 (1992). https://doi.org/10.1079/Wps19920010

    Article  Google Scholar 

  53. S. Abdanan Mehdizadeh, S. Minaei, N.H. Hancock, M.A. Karimi Torshizi, An intelligent system for egg quality classification based on visible-infrared transmittance spectroscopy. Inf. Process. Agric. 1, 105–114 (2014). https://doi.org/10.1016/j.inpa.2014.10.002

    Article  Google Scholar 

  54. Y. Kita, K. Kato, H. Kim, S. Hujitani, A. Kashimori, Nondestructive measurement of shell egg freshness using transmission spectroscopy—freshness prediction fulfilling all storage conditions: sealing, opening and in carbon dioxide. Jpn. J. Food Eng. 8, 83–88 (2007). https://doi.org/10.11301/jsfe2000.8.83

    Article  Google Scholar 

  55. J. Workman, L. Weyer, Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy (CRC Press, Boca Raton, 2012)

    Book  Google Scholar 

  56. Y. Ozaki, Near-infrared spectroscopy. Spectroscopy Series (Kodansha, Tokyo, 2015)

    Google Scholar 

Download references

Acknowledgements

We thank Shiho Yamanaka and Yuriko Pak, who were our former students, for their assiduous acquisition of data. We also express our appreciation to Akio Nakazato and others of Kagotani Co. Ltd. for their generous provision of samples. Our deep-felt thanks to the laboratory members for their being willing to try anything while we figured out how to write up this work.

Funding

A part of this work was supported financially by Hyogo Agri-innovation Research and Development Support Project in 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kamisoyama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Device and measurement method for quality attributes of shell egg is patented (JP 6518171).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuroki, S., Kanoo, T., Itoh, H. et al. Nondestructive VIS/NIR spectroscopy estimation of intravitelline vitamin E and cholesterol concentration in hen shell eggs. Food Measure 14, 1116–1124 (2020). https://doi.org/10.1007/s11694-019-00361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00361-8

Keywords

Navigation