Skip to main content
Log in

Preliminary evaluation of irradiated medium and the optimization of conditions for a catalase produced by Bacillus firmus GL3

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study, a hidden pitfall in the production of commercial tryptose soya agar (TSA) media sterilized with cobalt 60 irradiation was identified, and the applicability of TSA media was also determined. In addition, a strain of Bacillus firmus (B. firmus) with a high catalase activity, named GL3, was screened, and the conditions affecting the activity of its catalase were optimized. The 5 kinds of irradiated TSA media, named A, B, C, D, and E, were stored for 0 days, 15 days, 30 days, and 45 days, and their growth promoting ability, inhibitory properties, and sterility were analyzed to guarantee their suitability. The irradiated TSA media C had abnormal colony counts when Staphylococcus aureus (S. aureus) ATCC 6538 and Bacillus ginsengihumi (B. ginsengihumi) were used as the inocula, and both bacteria resumed normal growth when the media were stored for 15 days or the catalase was added. Screening of the significant variables and optimization of the catalase activity was performed using a Plackett–Burman design (PBD) and response surface methodology (RSM). The GL3 exhibited high catalase activity and stable catalase properties at 20–60° and pH 7.0–10.0. Under optimal conditions, the activity of catalase reached 20,668 U/mL. The abnormal counts of plates can be eliminated by increasing the storage days of the irradiated media during the effective period or by adding optimal fermentation liquid from B. firmus GL3. The high catalase activity and stable enzymatic properties of B. firmus GL3 have potential uses in industrial food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Șindilar E, Bondoc I (1996) Food poisoning caused by Bacillus cereus. Universitatea Agronomică și de Medicină Veterinară "Ion Ionescu de la Brad" Iași, Lucrări Științifice, 38–39, 125–130 (Source CAB Direct—https://www.cabdirect.org/cabdirect/abstract/19982204481?q=(Bondoc%2c+I.)

  2. H. Zhang, Y. Zhang, Y. Lin, T. Liang, Z. Chen, J. Li, Z. Yue, J. Lv, Q. Jiang, C. Yi, Ultrasensitive detection and rapid identification of multiple foodborne pathogens with the naked eyes. Biosens. Bioelectron. 71, 186–193 (2015). https://doi.org/10.1016/j.bios.2015.04.034

    Article  CAS  PubMed  Google Scholar 

  3. Bondoc I, Șindilar EV (2002) Veterinary sanitary control of food quality and hygiene. Vol. I. "Ion Ionescu de la Brad" Iaşi Publishing, ISBN 973-8014-64-6, pp. 244–262 (Source Google Academic—https://scholar.google.ro/citations?user=-dUf6oYAAAAJ&hl=ro&oi=sra.)

  4. K. Houf, R. Stephan, Isolation and characterization of the emerging foodborn pathogen Arcobacter from human stool. J. Microbiol. Methods 68(2), 408–413 (2007). https://doi.org/10.1016/j.mimet.2006.09.020

    Article  CAS  PubMed  Google Scholar 

  5. S. Hameed, L. Xie, Y. Ying, Conventional and emerging detection techniques for pathogenic bacteria in food science: a review. Trends Food Sci. Technol. 81, 61–73 (2018). https://doi.org/10.1016/j.tifs.2018.05.020

    Article  CAS  Google Scholar 

  6. Bondoc I (2007) Technology and quality control of milk and dairy products. Vol. I. "Ion Ionescu de la Brad" Iaşi Publishing, ISBN 978-973-7921-97-0, pp. 29–48 (Source Google Academic—https://scholar.google.ro/citations?user=-dUf6oYAAAAJ&hl=ro&oi=sra.)

  7. M. Trsan, K. Seme, S. Srcic, The environmental monitoring in hospital pharmacy cleanroom and microbiota catalogue preparation. Saudi Pharm. J. 27(4), 455–462 (2019). https://doi.org/10.1016/j.jsps.2019.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  8. M.C. Campagna, M.T. Di Schiavi, M. Foti, M.C. Mosconi, G. Mattiolo, R. Cavallina, Application of microbiological method direct epifluorescence filter techique/aerobic plate count agar in the identification of irradiated herbs and spices. Italian J. Food Saf. 3(3), 1650 (2014). https://doi.org/10.4081/ijfs.2014.1650

    Article  Google Scholar 

  9. L. Ounalli, A. Mejri, N. Mejri, Radiation efficiency of a depleted cobalt-60 source for products that require low radiation doses. Radiat. Phys. Chem. 150, 169–171 (2018). https://doi.org/10.1016/j.radphyschem.2018.04.032

    Article  CAS  Google Scholar 

  10. F.C. Fang, Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2(10), 820–832 (2004). https://doi.org/10.1038/nrmicro1004

    Article  CAS  PubMed  Google Scholar 

  11. A. Lallement, V. Vinatier, M. Brigante, L. Deguillaume, A.M. Delort, G. Mailhot, First evaluation of the effect of microorganisms on steady state hydroxyl radical concentrations in atmospheric waters. Chemosphere 212, 715–722 (2018). https://doi.org/10.1016/j.chemosphere.2018.08.128

    Article  CAS  PubMed  Google Scholar 

  12. M. Valko, D. Leibfritz, J. Moncol, M.T. Cronin, M. Mazur, J. Telser, Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39(1), 44–84 (2007). https://doi.org/10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  13. H.I. Adler, Catalase, hydrogen peroxide, and Ionizing radiation. Radiat. Res. Suppl. 3, 110–129 (1963). https://doi.org/10.2307/3583679

    Article  CAS  Google Scholar 

  14. T. Junillon, J.P. Flandrois, Diminution of 2,3,5-triphenyltetrazolium chloride toxicity on Listeria monocytogenes growth by iron source addition to the culture medium. Food Microbiol. 38, 1–5 (2014). https://doi.org/10.1016/j.fm.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  15. S. Poirier, O. Chapleur, Influence of support media supplementation to reduce the inhibition of anaerobic digestion by phenol and ammonia: effect on degradation performances and microbial dynamics. Data Brief 19, 1733–1754 (2018). https://doi.org/10.1016/j.dib.2018.06.071

    Article  PubMed  PubMed Central  Google Scholar 

  16. B. Marthi, B.T. Shaffer, B. Lighthart, L. Ganio, Resuscitation effects of catalase on airborne bacteria. Appl. Environ. Microbiol. 57, 2775–2776 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. E. Struharnanska, Z. Levarski, S. Birova, S. Stuchlik, J. Turna, M. Zamocky, Effect of recombinant catalase AfKatG as an additive in growth media of food strains. J. Biotechnol. 280, 32–91 (2018). https://doi.org/10.1016/j.jbiotec.2018.06.196

    Article  Google Scholar 

  18. P.I. Dewi, Y. Kamagata, M. Tanaka, K. Asano, C.H. Nakatsu, Are uncultivated bacteria really uncultivable? Microbes Environ. 27(4), 356–366 (2012). https://doi.org/10.1264/jsme2.ME12092

    Article  Google Scholar 

  19. L.G. Silva, A.P.R. Lorenzetti, R.A. Ribeiro, I.R. Alves, L. Leaden, R.S. Galhardo, T. Koide, M.V. Marques, OxyR and the hydrogen peroxide stress response in Caulobacter crescentus. Gene 700, 70–84 (2019). https://doi.org/10.1016/j.gene.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  20. B.S. Sooch, B.S. Kauldhar, M. Puri, Recent insights into microbial catalases: isolation, production and purification. Biotechnol. Adv. 32(8), 1429–1447 (2014). https://doi.org/10.1016/j.biotechadv.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  21. J. Kaushal, S. Mehandia, G. Singh, A. Raina, S.K. Arya, Catalase enzyme: application in bioremediation and food industry. Biocatal. Agric. Biotechnol. 16, 192–199 (2018). https://doi.org/10.5936/csbj.201209017

    Article  Google Scholar 

  22. S. Li, X. Yang, S. Yang, M. Zhu, X. Wang, Technology prospecting on enzymes: application, marketing and engineering. Comput. Struct. Biotechnol. J. 2, 9–17 (2012). https://doi.org/10.5936/csbj.201209017

    Article  Google Scholar 

  23. C. Staerck, A. Gastebois, P. Vandeputte, A. Calenda, G. Larcher, L. Gillmann, N. Papon, J.P. Bouchara, M.J.J. Fleury, Microbial antioxidant defense enzymes. Microb. Pathog. 110, 56–65 (2017). https://doi.org/10.1016/j.micpath.2017.06.015

    Article  CAS  PubMed  Google Scholar 

  24. M. Ferrer, O. Golyshina, A. Beloqui, P.N. Golyshin, Mining enzymes from extreme environments. Curr. Opin. Microbiol. 10(3), 207–214 (2007). https://doi.org/10.1016/j.mib.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  25. N. Hassan, M. Rafiq, M. Rehman, W. Sajjad, F. Hasan, S. Abdullah, Fungi in acidic fire: a potential source of industrially important enzymes. Fungal Biol. Rev. 33(1), 58–71 (2019). https://doi.org/10.1016/j.fbr.2018.08.002

    Article  Google Scholar 

  26. C.K. Prier, B. Kosjek, Recent preparative applications of redox enzymes. Curr. Opin. Chem. Biol. 49, 105–112 (2019). https://doi.org/10.1016/j.cbpa.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  27. M.H. Hadwan, N.H. Abed, Data supporting the spectrophotometric method for the estimation of catalase activity. Data Brief 6, 194–199 (2016). https://doi.org/10.1016/j.dib.2015.12.012

    Article  PubMed  Google Scholar 

  28. L. Lincoln, V.S. More, S.S. More, Isolation, screening and optimization of extracellular glucoamylase from Paenibacillus amylolyticus strain NEO03. Biocatal. Agric. Biotechnol. 18, 1–24 (2019). https://doi.org/10.1016/j.bcab.2019.101054

    Article  Google Scholar 

  29. A. Vasiee, B.A. Behbahani, F.T. Yazdi, S. Moradi, Optimization of the production conditions of the lipase produced by Bacillus cereus from rice flour through Plackett-Burman Design (PBD) and response surface methodology (RSM). Microbal Pathog. 101, 36–43 (2016). https://doi.org/10.1016/j.micpath.2016.10.020

    Article  CAS  Google Scholar 

  30. M.H. Hadwan, S.K. Ali, New spectrophotometric assay for assessments of catalase activity in biological samples. Anal. Biochem. 542, 29–33 (2018). https://doi.org/10.1016/j.ab.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  31. G. Hazirolan, N. Kocak, A. Karagoz, Sequence-based identification, genotyping and virulence factors of Trichosporon asahii strains isolated from urine samples of hospitalized patients (2011–2016). J. Mycol. Med. 28(3), 452–456 (2018). https://doi.org/10.1016/j.mycmed.2018.06.006

    Article  CAS  PubMed  Google Scholar 

  32. Karlapudi AP, Krupanidhi S (2018) Plackett–Burman design for screening of process components and their effects on production of lactase by newly isolated Bacillus sp. VUVD101 strain from Dairy effluent. Beni-Suef Univ. J. Basic Appl. Sci. 7(4), 543–546 https://doi.org/10.1016/j.bjbas.2018.06.006

    Article  Google Scholar 

  33. M.H. Morowvat, Y. Ghasemi, Evaluation of antioxidant properties of some naturally isolated microalgae: identification and characterization of the most efficient strain. Biocatal. Agric. Biotechnol. 8, 263–269 (2016). https://doi.org/10.1016/j.bcab.2016.09.010

    Article  Google Scholar 

  34. M.C. Romero-Puertas, L.C. Terrón-Camero, M.A. Peláez-Vico, A. Olmedilla, L.M. Sandalio, Reactive oxygen and nitrogen species as key indicators of plant responses to Cd stress. Environ. Exp. Bot. 161, 107–119 (2019). https://doi.org/10.1016/j.envexpbot.2018.10.012

    Article  CAS  Google Scholar 

  35. H.E. Frey, E.C. Pollard, The action of gamma-ray-irradiated medium on bacteria: relation to the electron transport system. Radiat. Res. 36, 59–67 (1968). https://doi.org/10.2307/3572538

    Article  CAS  PubMed  Google Scholar 

  36. L. Guo, C. Zhang, G. Chen, M. Wu, W. Liu, C. Ding, Q. Dong, E. Fan, Q. Liu, Reactive oxygen species inhibit biofilm formation of Listeria monocytogenes. Microb. Pathog. 127, 183–189 (2019). https://doi.org/10.1016/j.micpath.2018.11.023

    Article  CAS  PubMed  Google Scholar 

  37. M. Ozacar, A.A. Mehde, W.A. Mehdi, Z.Z. Ozacar, O. Severgun, The novel multi cross-linked enzyme aggregates of protease, lipase, and catalase production from the sunflower seeds, characterization and application. Colloids Surf. B 173, 58–68 (2019). https://doi.org/10.1016/j.colsurfb.2018.09.042

    Article  CAS  Google Scholar 

  38. C.P. Feliciano, High-dose irradiated food: current progress, applications, and prospects. Radiat. Phys. Chem. 144, 34–36 (2018). https://doi.org/10.1016/j.radphyschem.2017.11.010

    Article  CAS  Google Scholar 

  39. Sandle T (2019) Chapter 1—Introduction to biocontamination and biocontamination control. In: Biocontamination control for pharmaceuticals and healthcare. Academic Press, London.

  40. Sandle T (2019) Chapter 6—Viable environmental monitoring methods. In: Biocontamination control for pharmaceuticals and healthcare. Academic Press, London.

  41. T. Tanaka, K. Kawasaki, S. Daimon, W. Kitagawa, K. Yamamoto, H. Tamaki, M. Tanaka, C.H. Nakatsu, Y. Kamagata, A hidden pitfall in the preparation of agar media undermines microorganism cultivability. Appl. Environ. Microbiol. 80(24), 7659–7666 (2014). https://doi.org/10.1128/AEM.02741-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Shanghai Nuodi Biotechnology Co., Ltd (Shanghai, P. R. China) and College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xibin Ning.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Ning, X., Chai, H. et al. Preliminary evaluation of irradiated medium and the optimization of conditions for a catalase produced by Bacillus firmus GL3. Food Measure 14, 1073–1084 (2020). https://doi.org/10.1007/s11694-019-00357-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00357-4

Keywords

Navigation