Skip to main content
Log in

Effect of microwave processing on physicothermal properties, antioxidant potential, in vitro protein digestibility and microstructure of durum wheat semolina

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The effect of microwave treatment on the physicothermal properties, antioxidant activity, protein digestibility and structural features of durum wheat semolina was investigated by varying time periods (1, 1.5 and 2 min) in a microwave oven set at 900 W. Results suggested that microwave treatment on durum wheat semolina caused a significant improvement in functional properties like water holding capacity (1.91 ± 0.08 to 2.63 ± 0.04 g/g), oil holding capacity (2.25 ± 0.36 to 3.05 ± 0.09 g/g), swelling power (6.08 ± 0.06 to 9.23 ± 1.15 g/100 g) and solubility (0.11 ± 0.01 to 0.13 ± 0.15 g/100 g). Overall colour difference (∆E*) increase from 22.63 ± 0.36 (untreated) to 31.14 ± 0.27 (2 min), while significant decrease in gelatinization enthalpy (2.49 ± 0.08 to 1.53 ± 0.09 J/g) and peak viscosity (1501 ± 5.29 to 127 ± 3.60 cP) was seen after the treatment. Total phenolic content (free + bound) decreased from 2.61 ± 0.01 to 0.98 ± 0.03 mg GAE/g, while antioxidant activity expressed as inhibitory concentration (IC50) improved (1.60 ± 0.05 to 0.79 ± 0.01 mg/ml) as microwave heating progressed. In vitro protein digestibility decreased significantly (71.35 ± 0.05 to 53.64 ± 0.04%) as the duration of microwave heating increased. Microstructure examination revealed small defects and rupturing of starch granules, whereas FTIR spectra of durum wheat semolina did not change by microwave heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. F.J. Brouns, V.J. Van Buul, P.R. Shewry, Cereal Sci. 58, 2 (2013)

    Article  Google Scholar 

  2. S. Zhao, S. Xiong, C. Qiu, Y. Xu, J. Stored Prod. Res. 43, 4 (2007)

    Google Scholar 

  3. S.M. El-Naggar, A.A. Mikhaiel, J. Stored Prod. Res. 47, 3 (2011)

    Article  Google Scholar 

  4. P. Purohit, D.S. Jayas, B.K. Yadav, V. Chelladurai, P.G. Fields, N.D.G. White, J. Stored Prod. Res. 53, 2 (2013)

    Article  Google Scholar 

  5. A. Manickavasagan, P.M.K. Alahakoon, T.K. Al-Busaidi, S. Al-Adawi, A.K. Al-Wahaibi, A.A. Al-Raeesi, D.S. Jayas, J. Stored Prod. Res. 55, 4 (2013)

    Article  Google Scholar 

  6. C. Qu, H. Wang, S. Liu, F. Wang, C. Liu, J. Food Sci. Technol. 54, 11 (2017)

    Article  Google Scholar 

  7. T.A.D. Colman, I.M. Demiate, E. Schnitzler, J. Therm. Anal. Calorim. 115, 3 (2014)

    Article  Google Scholar 

  8. K. Hayat, X. Zhang, U. Farooq, S. Abbas, S. Xia, C. Jia, J. Zhang, Food Chem. 123, 2 (2010)

    Article  Google Scholar 

  9. W.N. Baba, I. Rashid, A. Shah, M. Ahmad, A. Gani, F.A. Masoodi, S.M. Wani, J. Saudi Soci. Agric. Sci. 15, 1 (2016)

    Google Scholar 

  10. L. Roman, M.M. Martinez, C.M. Rosell, M. Gomez, Food Bioprocess Technol. 8, 6 (2015)

    Article  Google Scholar 

  11. P. Jogihalli, L. Singh, K. Kumar, V.S. Sharanagat, LWT-Food. Sci. Technol. 86, 12 (2017)

    Google Scholar 

  12. L. Padalino, M.A. Del Nobile, B. la Gatta, M. Rutigliano, A. Di Luccia, A. Conte, Food Chem. 283, 14 (2019)

    Article  Google Scholar 

  13. K. Jan, M. Ahmad, S. Rehman, A. Gani, K. Khagan, Food Meas. Charact. 13, 2 (2019)

    Google Scholar 

  14. D.B. Kamble, R. Singh, S. Rani, B.P. Kaur, A. Upadhyay, N. Kumar, J. Food Process. Pres. 43, 10 (2019)

    Google Scholar 

  15. V.S. Sharanagat, R. Suhag, P. Anand, G. Deswal, R. Kumar, A. Chaudhary, P.K. Nema, Cereal Sci. 85, 1 (2019)

    Article  Google Scholar 

  16. K. Bashir, M. Aggarwal, LWT-. Food Sci. Technol. 69, 5 (2016)

    Google Scholar 

  17. C. Fuentealba, A.M. Quesille-Villalobos, A. González-Muñoz, J. Saavedra Torrico, K. Shetty, L. Gálvez Ranilla, CyTA 15, 1 (2017)

    Google Scholar 

  18. Dordević TM, Siler-Marinkovic SS, Dimitrijevic-Brankovic SI (2010) Food Chem.

  19. S. Rani, R. Singh, B.P. Kaur, A. Upadhyay, D.B. Kamble, Applied. Biol. Chem. 61, 5 (2018)

    Google Scholar 

  20. A. Gull, K. Prasad, P. Kumar, J. Saudi Soc. Agric. Sci. 17, 2 (2018)

    Google Scholar 

  21. A.E.M.M. Afify, H.S. El-Beltagi, S.M.A. El-Salam, A.A. Omran, PLoS ONE 7(2), e31154 (2012)

    Article  CAS  Google Scholar 

  22. AACC, Approved Methods of the AACC, 10th ed. (St. Paul: MN, 2000).

  23. I.A. Wani, A. Gani, A. Tariq, P. Shrama, F.A. Masoodi, H.M. Wani, Food Chem. 197, 7 (2016)

    Article  Google Scholar 

  24. Q.B. Ding, P. Ainsworth, A. Plunkelt, G. Trucker, H. Marson, J. Food Eng. 73, 2 (2006)

    Article  Google Scholar 

  25. H. Nawaz, M.A. Shad, S. Saleem, M.U.A. Khan, U. Nishan, T. Rasheed, M. Bilal, H.M.N. Iqbal, Int. J. Biol. Macromol. 113, 9 (2018)

    Article  Google Scholar 

  26. P. Jogihalli, L. Singh, K. Kumar, V.S. Sharanagat, Food Chem. 237, 24 (2017)

    Article  Google Scholar 

  27. Y. Xie, M. Yan, S. Yuan, S. Sun, Q. Huo, Chemistry. Cent. J. 7, 1 (2013)

    Article  Google Scholar 

  28. U. Uthumporn, N.I. Nadiah, W.Y. Koh, A.H. Zaibunnisa, L. Azwan, Int. Food Res. J. 23, 6 (2016)

    Google Scholar 

  29. P. Sharma, H.S. Gujral, C.M. Rosell, Cereal Sci. 53, 1 (2011)

    Article  Google Scholar 

  30. K.O. Falade, A.O. Abediyi, J. Food Process Eng. 38, 5 (2015)

    Article  Google Scholar 

  31. A. Gani, T. Gazanfar, R. Jan, S.M. Wani, F.A. Masoodi, Saudi Society. Agric. Sci. 12, 2 (2013)

    Google Scholar 

  32. S.P. Patil, S.S. Arya, Food Meas. Charact. 11, 3 (2017)

    Google Scholar 

  33. H.S. Gujral, P. Sharma, S. Rachna, LWT 44(10), 2223–2230 (2011)

    Article  CAS  Google Scholar 

  34. F. Zhu, Y.Z. Cai, J. Bao, H. Corke, Food Chem. 120, 1 (2010)

    Article  Google Scholar 

  35. P. Kumari, B.S. Khatkar, J. Food Sci. Technol. 53, 7 (2016)

    Google Scholar 

  36. Y. Hangun-Balkir, M.L. McKenney, Green Chem. Lett. Rev. 5, 2 (2012)

    Article  Google Scholar 

  37. W. Li, X.N. Qu, Y. Han, S.W. Zheng, J. Wang, Y.P. Wang, Int. J. Mol. Sci. 16, 2 (2015)

    Google Scholar 

  38. J. Mauron, J. Nutr. Sci. Vitaminol. 36, 4 (1990)

    Article  Google Scholar 

  39. S.S. Kadam, R.R. Smithard, M.D. Eyre, D.G. Armstrong, J. Sci. Food Agric. 39, 3 (1987)

    Article  Google Scholar 

  40. R.I.C.A.R.D.O. Bressani, L.G. Elias, New protein foods (Academic Press, New York, 1974), p. 30

    Google Scholar 

  41. Jane J (2009) Structural features of starch granules (2nd ed) by BeMiller N, James L, Whistler R, Elsevier, USA, p 193.

  42. Lewicka K, Siemion P, Kurcok P (2015) Int. J. Polymer Sci. (2015).

  43. G. Lewandowicz, T. Jankowski, J. Format, Carbohydr. Polyms. 42, 2 (2000)

    Google Scholar 

  44. N. Nidhina, S.P. Muthukumar, Food Chem. 173, 8 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakhi Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamble, D.B., Singh, R., Pal Kaur, B. et al. Effect of microwave processing on physicothermal properties, antioxidant potential, in vitro protein digestibility and microstructure of durum wheat semolina. Food Measure 14, 761–769 (2020). https://doi.org/10.1007/s11694-019-00324-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00324-z

Keywords

Navigation