Skip to main content
Log in

Preparation of acetylated starch by rolling-assisted method and its influence mechanism

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Advanced equipment can be used to produce high quality modified starch, but the secrets of these equipment are still unclear. In this study, cassava starch was taken as the research object to produce acetylated starch with low degree of substitution under rolling. Effects of rolling on acetylated starch quality and the changes in structures and properties of native starch were studied. The influence mechanisms of rolling on the quality of acetylated starch was analyzed according to the theory of mechanochemistry. The results indicated that the quality of acetylated starch increased prominently after rolling for 2 h and 12 h, and the reaction efficiency increased to 71.61% and 72.77%, respectively. The changes in structures and properties of native starch indicated that rolling have a significant mechanochemical effect on starch granules. With the increase of rolling time, the interior of starch granules gradually experienced the stress, aggregation and agglomeration stages, consecutively. Therefore, the quality of acetylated starch was improved significantly. In addition, the three stages of mechanochemical effect of starch varied in terms of influence mechanisms, so the mechanism of preparing high quality modified starch by means of advanced equipment was revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.T. Bee, L.T. Sin, C.T. Ratnam, B.F. Yap, A.R. Rahmat, Nucl. Instrum. Methods Phys. Res. B 416, 73–88 (2018). https://doi.org/10.1016/j.nimb.2017.12.014

    Article  CAS  Google Scholar 

  2. J. Huang, M. Wei, R. Ren, H. Li, S. Liu, D. Yang, Carbohydr. Polym. 163, 324–329 (2019). https://doi.org/10.1016/j.carbpol.2017.01.083

    Article  CAS  Google Scholar 

  3. N. Willis-Fox, E. Rognin, T.A. Aljohani, R. Daly, Chem 4(11), 2499–2531 (2018). https://doi.org/10.1016/j.chempr.2018.08.001

    Article  CAS  Google Scholar 

  4. S. Romeis, J. Schmidt, W. Peukert, Int. J. Miner. Process. 156, 24–31 (2016). https://doi.org/10.1016/j.minpro.2016.05.018

    Article  CAS  Google Scholar 

  5. P. Zhang, H. Li, G.M. Veith, S. Dai, Adv. Mater. 27(2), 234–239 (2015). https://doi.org/10.1002/adma.201403299

    Article  CAS  PubMed  Google Scholar 

  6. L. Li, S. Pu, Y. Liu, L. Zhao, J. Ma, J. Li, Adv. Powder Technol. 29(9), 2194–2203 (2018). https://doi.org/10.1016/j.apt.2018.06.003

    Article  CAS  Google Scholar 

  7. K. Topolski, H. Garbacz, Mater. Sci. Eng. A 739, 277–288 (2019). https://doi.org/10.1016/j.msea.2018.10.011

    Article  CAS  Google Scholar 

  8. F. Zhu, Carbohydr. Polym. 122, 456–480 (2015). https://doi.org/10.1016/j.carbpol.2014.10.063

    Article  CAS  PubMed  Google Scholar 

  9. K. Zhang, Y. Dai, H. Hou, X. Li, H. Dong, W. Wang, H. Zhang, Int. J. Biol. Macromol. 120, 2026–2034 (2018). https://doi.org/10.1016/j.ijbiomac.2018.09.196

    Article  CAS  PubMed  Google Scholar 

  10. D. Lin, W. Zhou, J. Zhao, W. Lan, R. Chen, Y. Li, B. Xing, Z. Li, M. Xiao, Z. Wu, X. Li, Int. J. Biol. Macromol. 103, 316–326 (2017). https://doi.org/10.1016/j.ijbiomac.2017.05.056

    Article  CAS  PubMed  Google Scholar 

  11. K. Zhao, B. Li, M. Xu, L. Jing, M. Gou, Z. Yu, J. Zheng, W. Li, LWT 90, 116–123 (2018). https://doi.org/10.1016/j.lwt.2017.12.021

    Article  CAS  Google Scholar 

  12. A. Makowska, A. Szwengiel, P. Kubiak, J. Tomaszewska-Gras, Starch/Stärke 66(9–10), 895–902 (2014). https://doi.org/10.1002/star.201300264

    Article  CAS  Google Scholar 

  13. Y. Wu, D. Fan, Y. Gao, S. Ma, B. Yan, H. Lian, J. Zhao, H. Zhang, Int. J. Biol. Macromol. 118, 997–1003 (2018). https://doi.org/10.1016/j.ijbiomac.2018.06.170

    Article  CAS  PubMed  Google Scholar 

  14. J. Wang, L. Su, S. Wang, J. Sci. Food Agric. 90(3), 424–429 (2010). https://doi.org/10.1002/jsfa.3832

    Article  CAS  PubMed  Google Scholar 

  15. J. Bai, X. Xie, X. Li, Y. Zhang, Starch/Stärke 69(11–12), 1700018 (2017). https://doi.org/10.1002/star.201700018

    Article  CAS  Google Scholar 

  16. Y. Lv, L. Zhang, M. Li, X. He, L. Hao, Y. Dai, Int. J. Biol. Macromol. 129, 207–213 (2019). https://doi.org/10.1016/j.ijbiomac.2019.02.028

    Article  CAS  PubMed  Google Scholar 

  17. M. Kuruc, T. Vopát, J. Peterka, Procedia Eng. 100, 877–884 (2015). https://doi.org/10.1016/j.proeng.2015.01.444

    Article  CAS  Google Scholar 

  18. P.K. Borah, M. Rappolt, R.K. Duary, A. Sarkar, Food Hydrocolloid 86, 162–171 (2019). https://doi.org/10.1016/j.foodhyd.2018.03.028

    Article  CAS  Google Scholar 

  19. V.K. Shivaraju, S. Vallayil Appukuttan, Starch/Stärke 71(5–6), 1700026 (2018). https://doi.org/10.1002/star.201700026

    Article  CAS  Google Scholar 

  20. T.P.R. Santos, C.M.L. Franco, E.L. Carmo, J.L. Jane, M. Leonel, J. Food Sci. Technol. 56, 376–383 (2019). https://doi.org/10.1007/s13197-018-3498-y

    Article  CAS  PubMed  Google Scholar 

  21. Q. Lai, Y. Li, Y. Wu, J. Ouyang, J. Food. Sci. Technol. 56(4), 1988–1996 (2019). https://doi.org/10.1007/s13197-019-03667-z

    Article  CAS  PubMed  Google Scholar 

  22. L. Wang, P. Wang, A.S. Saleh, Q. Yang, Y. Ge, N. Wang, S. Yang, Z. Xiao, Starch/Stärke 70(11–12), 1700290 (2018). https://doi.org/10.1002/star.201700290

    Article  CAS  Google Scholar 

  23. M. Yang, Mechanochemistry of Materials (Science Press, Beijing, 2010), pp. 4–64

    Google Scholar 

  24. J.M. Martinez-Alejo, Y. Benavent-Gil, C.M. Rosell, T. Carvajal, M.M. Martinez, Carbohydr. Polym. 200, 543–551 (2018). https://doi.org/10.1016/j.carbpol.2018.08.035

    Article  CAS  PubMed  Google Scholar 

  25. H. Atrous, N. Benbettaieb, F. Hosni, S. Danthine, C. Blecker, H. Attia, D. Ghorbel, Int J Biol Macromol. 80, 64–76 (2015). https://doi.org/10.1016/j.ijbiomac.2015.06.014

    Article  CAS  PubMed  Google Scholar 

  26. Y. Yassaroh, A.J. Woortman, K. Loos, Carbohydr. Polym. 201, 1–8 (2019). https://doi.org/10.1016/j.carbpol.2018.09.082

    Article  CAS  Google Scholar 

  27. S. Naguleswaran, T. Vasanthan, R. Hoover, D. Bressler, Food Res. Int. 51(2), 771–782 (2013). https://doi.org/10.1016/j.foodres.2013.01.057

    Article  CAS  Google Scholar 

  28. B. Ozel, D. Dag, M. Kilercioglu, S.G. Sumnu, M.H. Oztop, LWT-Food. Sci. Technol. 83, 10–17 (2017). https://doi.org/10.1016/j.lwt.2017.04.077

    Article  CAS  Google Scholar 

  29. Q. Xiao, Food Chem. 250, 83–88 (2018). https://doi.org/10.1016/j.foodchem.2018.01.043

    Article  CAS  PubMed  Google Scholar 

  30. S. Li, Z. Luo, X. Guan, K. Huang, Q. Li, F. Zhu, J. Liu, J. Cereal Sci. 87, 78–84 (2019). https://doi.org/10.1016/j.jcs.2019.03.002

    Article  CAS  Google Scholar 

  31. G.Y. Ren, D. Li, L.J. Wang, N. Özkan, Z.H. Mao, Carbohydr. Polym. 79(1), 101–105 (2010). https://doi.org/10.1016/j.carbpol.2009.07.031

    Article  CAS  Google Scholar 

  32. J. Zhang, L. Chen, J. Cui, L. Xiao, Z. Wang, J. Sci. Food Agric. 94(8), 1505–1512 (2014). https://doi.org/10.1002/jsfa.6446

    Article  CAS  PubMed  Google Scholar 

  33. J. Szymońska, M. Molenda, J. Wieczorek, Carbohydr. Polym. 134, 102–109 (2015). https://doi.org/10.1016/j.carbpol.2015.07.041

    Article  CAS  PubMed  Google Scholar 

  34. Y. Xie, B. Zhang, M.N. Li, H.Q. Chen, Food Chem. 289, 187–194 (2019). https://doi.org/10.1016/j.foodchem.2019.03.023

    Article  CAS  PubMed  Google Scholar 

  35. X. Xu, Y. Chen, Z. Luo, X. Lu, LWT 99, 179–187 (2019). https://doi.org/10.1016/j.lwt.2018.09.072

    Article  CAS  Google Scholar 

  36. M. Worzakowska, Starch-Stärke 70(7–8), 1700330 (2018). https://doi.org/10.1002/star.201700330

    Article  CAS  Google Scholar 

  37. Q. Wu, Mechanochemistry of Inorganic Materials (Chemical Industry Press, Beijing, 2008), pp. 5–12

    Google Scholar 

  38. K. Niu, Y. Dai, H. Dong, H. Hou, H. Zhang, C. Liu, Q. Ji et al., Food Sci. 38(19), 18–23 (2017). https://doi.org/10.7506/spkx1002-6630-201719004

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from the National Natural Science Foundation of China (Grant No. 31471619) and the Funds of Shandong “Double Tops” Program of China (Grant No. SYL2017XTTD01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangyong Dai.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, A., Dai, Y., Hou, H. et al. Preparation of acetylated starch by rolling-assisted method and its influence mechanism. Food Measure 14, 623–631 (2020). https://doi.org/10.1007/s11694-019-00308-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00308-z

Keywords

Navigation