Skip to main content
Log in

Evaluation of antioxidant and antimicrobial properties of dark red kidney bean (Phaseolus vulgaris) protein hydrolysates

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Protein isolate was prepared from dark red kidney bean and was subjected to hydrolysis by two different proteases pepsin and papain by separate experiments. The antioxidant and antimicrobial properties of the resulting hydrolysates were evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay and agar diffusion method, respectively. The resulting pepsin hydrolysate DPH-1 exhibited the highest antioxidant activity with an IC50 of 0.015 ± 0.004 mg/mL compared to protein isolate DPI (0.115 ± 0.023 mg/mL) and papain hydrolysate DPH-2 (0.066 ± 0.014 mg/mL). Hydrolysis resulted in the significant (p < 0.05) increase of total polyphenol content in DPH-1 (38.39 mg GAE/g ± 1.17) and DPPH radical scavenging activity was significantly (p < 0.05) higher in both DPH-1 and DPH-2 than that of DPI. Also, DPH-1 showed better performance in terms of antioxidant activities in comparison to ascorbic acid, but the activity of DPH-1 increased significantly (p < 0.05) at 0.016 mg/mL. Moreover, both DPH-1 and DPH-2 delayed the formation of oxidizing substances when applied in apple juice stored for 6 days at room temperature. However, DPH-1 significantly (p < 0.05) retarded the oxidizing substances compared to control. Besides, DPH-1 exerted an antibacterial action against Escherichia coli with the diameter of the zone of inhibition (DIZ) of 20.26 mm and DPH-2 inhibited Pseudomonas aeruginosa with the DIZ of 19.23 mm. Overall, the results indicate that the dark red kidney bean protein hydrolysates thus obtained may be used as promising antioxidants or food additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DPI:

Dark red kidney bean protein isolate

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

DPH-1:

Dark red kidney bean protein hydrolysate-1

DPH-2:

Dark red kidney bean protein hydrolysate-2

IC50 :

The half maximal inhibitory concentration

GAE:

Gallic acid equivalent

DIZ:

Zone of inhibition

SD:

Standard deviation

References

  1. J.S. Wang, M.M. Zhao, Q.Z. Zhao, Y.M. Jiang, Food Chem. 101, 1658 (2007)

    CAS  Google Scholar 

  2. A.G.P. Samaranayaka, E.C.Y. Li-Chan, J. Funct. Foods 3, 229 (2011)

    CAS  Google Scholar 

  3. N. S. Sampath Kumar, R. A. Nazeer, R. Jaiganesh, Amino Acids 42, 1641 (2012).

  4. N. Ito, M. Hirose, S. Fukushima, H. Tsuda, T. Shirai, M. Tatematsu, Food Chem. Toxicol. 24, 1071 (1986)

    CAS  PubMed  Google Scholar 

  5. F. Shahidi, Nahrung - Food 44, 158 (2000)

    CAS  PubMed  Google Scholar 

  6. E.A. Peña-Ramos, Y.L. Xiong, Meat Sci. 64, 259 (2003)

    PubMed  Google Scholar 

  7. S. Sakanaka, Y. Tachibana, Food Chem. 95, 243 (2006)

    CAS  Google Scholar 

  8. H. Hagen, K. Sandnes, International Patent No. WO, 2004071202 (2004).

  9. K. Suetsuna, J.-R. Chen, Food Sci. Technol. Res. 8, 227 (2002)

    CAS  Google Scholar 

  10. J. Sun, H. He, J.X. Bi, J. Agric. Food Chem. 52, 6646 (2004)

    CAS  PubMed  Google Scholar 

  11. J. Sun, Y.F. Chu, X. Wu, R.H. Liu, J. Agric. Food Chem. 50, 7449 (2002)

    CAS  PubMed  Google Scholar 

  12. J. Shi, S.J. Xue, Y. Kakuda, S. Ilic, D. Kim, Process Biochem. 42, 1436 (2007)

    CAS  Google Scholar 

  13. S.W. Yin, C.H. Tang, Q.B. Wen, X.Q. Yang, L. Li, Food Chem. 110, 938 (2008)

    CAS  PubMed  Google Scholar 

  14. D.A. Luna-Vital, L. Mojica, E. González de Mejía, S. Mendoza, G. Loarca-Piña, Food Res. Int. 76, 39 (2015)

    CAS  Google Scholar 

  15. D.Z. Ma, H.X. Wang, T.B. Ng, Peptides 30, 2089 (2009)

    CAS  PubMed  Google Scholar 

  16. K.B. Mccann, B.J. Shiell, W.P. Michalski, A. Lee, J. Wan, H. Roginski, M.J. Coventry, Int. Dairy J. 16, 316 (2006)

    CAS  Google Scholar 

  17. J.H. Wong, B.N. Tzi, Peptides 26, 1120 (2005)

    CAS  PubMed  Google Scholar 

  18. J.H. Wong, T.B. Ng, Int. J. Biochem. Cell Biol. 37, 1626 (2005)

    CAS  PubMed  Google Scholar 

  19. J.H. Wong, T.B. Ng, Peptides 26, 2086 (2005)

    CAS  PubMed  Google Scholar 

  20. S.D. Todorov, M.B. Wachsman, H. Knoetze, M. Meincken, L.M.T. Dicks, Int. J. Antimicrob. Agents 25, 508 (2005)

    CAS  PubMed  Google Scholar 

  21. M. Dueñas, C. Martínez-Villaluenga, R.I. Limón, E. Peñas, J. Frias, Food Res. Int. 70, 55 (2015)

    Google Scholar 

  22. M.D. Pierson, N.R. Reddy, Appl. Environ. Microbiol. 43, 835 (1982)

    PubMed  PubMed Central  Google Scholar 

  23. X. Rui, J.I. Boye, S. Ribereau, B.K. Simpson, S.O. Prasher, Food Res. Int. 44, 2497 (2011)

    CAS  Google Scholar 

  24. AOAC, Official Method of Analysis of AOAC International, 17th ed. (AOAC, Washington DC, 2002).

    Google Scholar 

  25. AACC, Approved Methods of the American Association of Cereal Chemists, 10th ed. (Am. Assoc. Cereal Chem., Inc, St. Paul, 2000).

    Google Scholar 

  26. X. Rui, J.I. Boye, B.K. Simpson, S.O. Prasher, J. Funct. Foods 5, 1116 (2013)

    CAS  Google Scholar 

  27. J. Carrasco-Castilla, A.J. Hernández-Álvarez, C. Jiménez-Martínez, C. Jacinto-Hernández, M. Alaiz, J. Girón-Calle, J. Vioque, G. Dávila-Ortiz, Food Chem. 135, 1789 (2012)

    CAS  PubMed  Google Scholar 

  28. Y.S. Velioglu, G. Mazza, L. Gao, B.D. Oomah, J. Agric. Food Chem. 46, 4113 (1998)

    CAS  Google Scholar 

  29. G.C. Yen, H.Y. Chen, J. Agric. Food Chem. 43, 27 (1995)

    CAS  Google Scholar 

  30. M. Glevitzky, M. Pop, G. Brusturean, I. Bogdan, M. Calisevici, D. Perju, Rev. Chim. 59, 1291 (2008)

    CAS  Google Scholar 

  31. European Pharmacopoeia 5.0, European Pharmacopoeia 5.0, 0.1/2005: 20702, Electronic edition (European Pharmacopoeia Commission, 2005).

    Google Scholar 

  32. A.W. Bauer, W.M.M. Kirby, J.C. Sherris, M. Turck, Am. J. Clin. Pathol. 45, 493 (1966)

    CAS  PubMed  Google Scholar 

  33. C. Perez, Acta Biol Med Exp 15, 113 (1990)

    Google Scholar 

  34. W.F. Broekaert, F.R.G. Terras, B.P.A. Cammue, J. Vanderleyden, F.E.M.S. Microbiol, Lett. 69, 55 (1990)

    CAS  Google Scholar 

  35. M. Abril, K.J. Curry, B.J. Smith, D.E. Wedge, Plant Dis. 92, 106 (2008)

    CAS  PubMed  Google Scholar 

  36. R. Mesquita, A. Corrêa, M. Celeste, R. Lima, A. Abreu, Ciência e Agrotecnol. 31, 1114 (2007)

    CAS  Google Scholar 

  37. S.K. Sathe, Crit. Rev. Biotechnol. 22, 175 (2002)

    CAS  PubMed  Google Scholar 

  38. Z. Rehman, A. Salariya, S. Zafar, Food Chem. 73, 351 (2001)

    CAS  Google Scholar 

  39. A. Valdez-Ortiz, C.I. Fuentes-Gutiérrez, L.J. Germán-Báez, R. Gutiérrez-Dorado, S. Medina-Godoy, LWT Food Sci. Technol. 46, 91 (2012)

    CAS  Google Scholar 

  40. A.S.M.G.M. Akond, J. Berthold, L. Gates, K. Peters, H. Delong, K. Hossain, Am. J. Food Technol. 6, 385 (2011)

    CAS  Google Scholar 

  41. X. Wu, G.R. Beecher, J.M. Holden, D.B. Haytowitz, S.E. Gebhardt, R.L. Prior, J. Agric. Food Chem. 54, 4069 (2006)

    CAS  PubMed  Google Scholar 

  42. D. Heimler, P. Vignolini, M.G. Dini, A. Romani, J. Agric. Food Chem. 53, 3053 (2005)

    CAS  PubMed  Google Scholar 

  43. C.H. Tang, J. Peng, D.W. Zhen, Z. Chen, Food Chem. 115, 672 (2009)

    CAS  Google Scholar 

  44. D.R. Dias, C.M.P. de Abreu, M.P.C. Silvestre, R.F. Schwan, Food Sci. Technol. 30, 94 (2010)

    Google Scholar 

  45. D. Huang, O.U. Boxin, R.L. Prior, J. Agric. Food Chem. 53, 1841 (2005)

    CAS  PubMed  Google Scholar 

  46. C.C. Udenigwe, R.E. Aluko, J. Food Sci. 53, 1841 (2005)

    Google Scholar 

  47. H.G. Byun, J.K. Lee, H.G. Park, J.K. Jeon, S.K. Kim, Process Biochem. 44, 842 (2009)

    CAS  Google Scholar 

  48. M. Phelan, A. Aherne, R.J. FitzGerald, N.M. O’Brien, Int. Dairy J. 19, 643 (2009)

    CAS  Google Scholar 

  49. A. Pihlanto, Int. Dairy J. 16, 1306 (2006)

    CAS  Google Scholar 

  50. V. Alibabić, A. Skender, M. Bajramović, E. Šertović, E. Bajrić, Turkish. J. Agric. For. 42, 67 (2018)

    Google Scholar 

  51. V. Okatan, Folia Hortic. 30, 93 (2018)

    Google Scholar 

  52. M. Šlosár, A. Hegedűsová, I. Mezeyová, M. Timoracká, O. Hegedűs, Int. J. Agric. For. Life Sci. 2, 62 (2018)

    Google Scholar 

  53. F. Özdemir, H. Şahin Nadeem, A. Akdoğan, C. Dinçer, A. Topuz, Turkish J. Agric. For. 42, 334 (2018).

  54. H. Østdal, M.J. Davies, H.J. Andersen, Free Radic. Biol. Med. 33, 201 (2002)

    PubMed  Google Scholar 

  55. J. Neužil, J.M. Gebicki, R. Stocker, Biochem. J. 293, 601 (1993)

    PubMed  PubMed Central  Google Scholar 

  56. L.L. Wang, Y.L. Xiong, J. Agric. Food Chem. 53, 9186 (2005)

    CAS  PubMed  Google Scholar 

  57. B. Kong, Y.L. Xiong, J. Agric. Food Chem. 54, 6059 (2006)

    CAS  PubMed  Google Scholar 

  58. I. Arcan, A. Yemenicioǧlu, Food Chem. 103, 301 (2007)

    CAS  Google Scholar 

  59. E.A. Peña-Ramos, Y.L. Xiong, J. Food Sci. 67, 2952 (2002)

    Google Scholar 

  60. N. Chen, H. Yang, Y. Sun, J. Niu, S. Liu, Peptides 38, 344 (2012)

    CAS  PubMed  Google Scholar 

  61. N. Cumby, Y. Zhong, M. Naczk, F. Shahidi, Food Chem. 109, 144 (2008)

    CAS  PubMed  Google Scholar 

  62. L.M. Humiski, R.E. Aluko, J. Food Sci. 72, 605 (2007)

    Google Scholar 

  63. M. Asouri, R. Ataee, A.A. Ahmadi, A. Amini, M.R. Moshaei, Asian J. Chem. 25, 7593 (2013)

    CAS  Google Scholar 

  64. C.-C. Hu, C.-H. Hsiao, S.-Y. Huang, S.-H. Fu, C.-C. Lai, T.-M. Hong, H.-H. Chen, F.-J. Lu, J. Agric. Food Chem. 52, 5735 (2004)

    CAS  PubMed  Google Scholar 

  65. L.K. Beh, Z. Zakaria, B.K. Beh, W.Y. Ho, S.K. Yeap, N.B.M. Alitheen, J. Med. Plants Res. 6, 5857 (2012)

    Google Scholar 

  66. M. Díaz, E.A. Decker, J. Agric. Food Chem. 52, 8208 (2004)

    PubMed  Google Scholar 

  67. M. Salami, A.A. Moosavi-Movahedi, M.R. Ehsani, R. Yousefi, T. Haertlé, J.M. Chobert, S.H. Razavi, R. Henrich, S. Balalaie, S.A. Ebadi, S. Pourtakdoost, A. Niasari-Naslaji, J. Agric. Food Chem. 58, 3297 (2010)

    CAS  PubMed  Google Scholar 

  68. N. Benkerroum, Int. J. Dairy Technol. 63, 320 (2010)

    CAS  Google Scholar 

  69. S.A. Akalin, Trends Food Sci. Technol. 36, 79 (2014)

    Google Scholar 

  70. V. Demers-Mathieu, S.F. Gauthier, M. Britten, I. Fliss, G. Robitaille, J. Jean, Int. Dairy J. 28, 94 (2013)

    CAS  Google Scholar 

  71. H. Almaas, H. Holm, T. Langsrud, R. Flengsrud, G.E. Vegarud, Br. J. Nutr. 96, 562 (2006)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank and acknowledge Shahjalal University of Science and Technology (SUST), Sylhet, Bangladesh for funding the research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayesha Sarker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, M., Sarker, A., Azad, M.A.K. et al. Evaluation of antioxidant and antimicrobial properties of dark red kidney bean (Phaseolus vulgaris) protein hydrolysates. Food Measure 14, 303–313 (2020). https://doi.org/10.1007/s11694-019-00292-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00292-4

Keywords

Navigation