Skip to main content
Log in

Physicochemical, functional and structural characterization of Mexican Oxalis tuberosa starch modified by cross-linking

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Chemical modification of the native starch of Mexican Oxalis tuberosa was studied by cross-linking it with different concentrations of epichlorohydrin (0.5–2%). The results showed an extraction yield of 65.1 ± 0.20% (dry basis) for native starch, which can be considered as a potential unconventional source for starch extraction. The amylose contents of native and modified starch decreased from 24.66 to 13.57%, respectively. X-ray diffraction analysis showed an increase in the crystalline part in modified starch. The chemical modification changed the functional properties of starch. The clarity of the paste determined by spectrophotometer at 650 nm showed an inversely proportional relationship with the epichlorohydrin concentration. The lipid absorption index showed an increase up to 210% (using 2% epichlorohydrin) compared to that of native starch. The structure was analyzed by SEM and showed granules before and after the modification an ellipsoid morphology while the polarized light microscopy analysis showed birefringence patterns. The average diameter of the granules evaluated using a particle size analyzer (CILAS) ranged between 31.46 μm and 35.32 μm for modified starch and was 30.36 μm for the native starch, both higher than that of the corn-starch granules (16.10 μm). This makes the Mexican O. tuberosa an option for starch extraction and for application in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. X. Fan, S. Zhang, L. Lin, L. Zhao, A. Liu, C. Wei, Food Hydrocoll. 61, 183–190 (2016)

    Article  CAS  Google Scholar 

  2. M. Wei, R. Andersson, G. Xie, S. Salehi, D. Boström, Starch/Starkë 70, 5–6 (2018)

    Google Scholar 

  3. K. Guo, L. Lin, X. Fan, L. Zhang, C. Wei, Food Chem. 257, 75–82 (2018)

    Article  CAS  Google Scholar 

  4. R.C. Turola-Barbi, G. Lopes-Teixeira, P.S. Silveira-Hornung, S. Ávila, R.H. Ribani, Food Hydrocoll. 77, 646–658 (2018)

    Article  CAS  Google Scholar 

  5. K. Jamir, K. Seshagirirao, Food Hydrocoll. 72, 247–253 (2017)

    Article  CAS  Google Scholar 

  6. A.R. Cortella, M.L. Pochettino, Starch/Starkë 47, 455–461 (1995)

    Article  CAS  Google Scholar 

  7. A.N. Hernández-Lauzardo, J. Solorza-Feria, L.A. Bello-Pérez, Starch/Starkë 56, 357–363 (2004)

    Article  Google Scholar 

  8. A.O. Oladebeye, A.A. Oshodi, I.A. Amoo, A.A. Karim, A.A. Oladebeye, Food Meas. 13, 16–25 (2019)

    Article  Google Scholar 

  9. M. Sjӧӧ, L. Nilsson, Starch Food: Structure, Function and Applications, 2nd edn. (Woodhead, Cambridge, 2018)

    Google Scholar 

  10. T. Mehfooz, T.M. Ali, A. Hasnain, J. Food Meas. Charact. 13, 1058–1069 (2019)

    Article  Google Scholar 

  11. H. Heo, Y. Lee, Y.H. Chang, Int. J. Food Prop. 20, 2138–2150 (2017)

    CAS  Google Scholar 

  12. M. Kim, S. Lee, Carbohydr. Polym. 50, 331–337 (2002)

    Article  CAS  Google Scholar 

  13. ISO, Rice—Determination of amylose content—Part 1: Referencen method (2007)

  14. K.S. Aplevicz, I.M. Demiate, Ciênc. Technol. Aliment 27, 478–484 (2007)

    Article  CAS  Google Scholar 

  15. A. Timgren, M. Rayner, P. Dejmek, D. Marku, Food Sci. Nutr. 1, 157–171 (2013)

    Article  CAS  Google Scholar 

  16. M. Sánchez-Becerril, A.G. Marangoni, M.J. Perea-Flores, N. Cayetano-Castro, H. Martinez-Gutiérrez, J.A. Andraca-Adame, J. Pérez-Martinez, Food Struct. 16, 1–7 (2018)

    Article  Google Scholar 

  17. J. Jiménez-Guzmán, D.E. Leyva-Daniel, B.H. Camacho-Díaz, A.R. Jimenéz-Aparicio, in Sustainable Drying Technologies, ed. by I. J. del Real Olvera (IntechOpen, London, 2016), pp. 79–94

  18. J. Colivet, R.A. Carvalho, Ind. Crop. Prod. 95, 599–607 (2016)

    Article  Google Scholar 

  19. F.F. Velásquez-Barreto, L.A. Bello-Pérez, H. Yee-Madeira, C.E. Velezmoro-Sánchez, Starch/Starkë 71, 1–8 (2018)

    Google Scholar 

  20. J. Singh, L. Kaur, M.A. Burlinton, Advances in Potato Chemistry and Technology, 2nd edn. (Academic Press Editorial Elsevier Inc., San Diego, 2016), p. 752

  21. O.S. Kittipongpatana, N. Kittipongpatana, Food Chem. 141, 1438–1444 (2013)

    Article  CAS  Google Scholar 

  22. S. Wang, C. Li, L. Copeland, Q. Niu, S. Wang, Compr. Rev. Food Sci. Food Saf.14, 568–585 (2015)

    Article  CAS  Google Scholar 

  23. A.N. Jyothi, S.N. Moorthy, K.N. Rajasekharan, Starch/Starkë 58, 292–299 (2006)

    Article  CAS  Google Scholar 

  24. S. Hedayati, M. Niakousari, Food Hydrocoll. 81, 1–5 (2018)

    Article  CAS  Google Scholar 

  25. R. Verma, S. Jan, S. Rani, T.L. Swer, K.S. Prakash, M.Z. Dar, Radiat. Phys. Chem. 144, 37–42 (2018)

    Article  CAS  Google Scholar 

  26. D. Chandanasree, K. Gul, C.S. Riar, Food Hydrocoll. 52, 175–182 (2016)

    Article  CAS  Google Scholar 

  27. X. Kong, X. Zhou, Z. Sui, J. Bao, Int. J. Biol. Macromol. 91, 1141–1150 (2016)

    Article  CAS  Google Scholar 

  28. Y.C. Lai, S.Y. Wang, H.Y. Gao, K.M. Nguyen, C.H. Nguyen, M.C. Shih, K.H. Lin, Food Chem. 199, 556–564 (2016)

    Article  CAS  Google Scholar 

  29. D. Ackar, J. Babic, D. Šubaric, M. Kopjar, B. Milic, Carbohydr. Polym. 81, 76–82 (2010)

    Article  CAS  Google Scholar 

  30. A. Marefati, B. Wiege, N.U. Haase, M. Matos, M. Rayner, Carbohydr. Polym. 175, 473–483 (2017)

    Article  CAS  Google Scholar 

  31. L. Bai, S. Huan, Z. Li, D.J. Mcclements, Food Hydrocoll. 66, 144–153 (2017)

    Article  CAS  Google Scholar 

  32. D.S. De Castro, M.I. Dos Santos, L.M. De Melo Silva, L.J. Pereira, W. Pereira da Silva, F.R. Feitosa, Food Res. Int., 90, 121–132 (2018)

    Google Scholar 

  33. J.H. Han, G.H. Seo, I.M. Park, G.N. Kim, D.S. Lee, Food Eng. Phys. Prop. 71, 290–296 (2006)

    Google Scholar 

  34. M. Xu, A.S.M. Saleh, B. Gong, B. Li, L. Jing, M. Gou, H. Jiang, W. Li, Food Res. Int. 111, 324–333 (2018)

    Article  CAS  Google Scholar 

  35. B. Zhang, X. Li, J. Liu, F. Xie, L. Chen, Food Hydrocoll. 31, 68–73 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The obtaining of results of this work counted with contributions of PFCE (Program for Strengthening Educational Quality-SEP) 2017 resources. Financial resources of a public nature. Its use is prohibited for personal or partisan promotion purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Erik González-Jiménez.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations''.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Núñez-Bretón, L., Cruz-Rodríguez, L., Tzompole-Colohua, M. et al. Physicochemical, functional and structural characterization of Mexican Oxalis tuberosa starch modified by cross-linking. Food Measure 13, 2862–2870 (2019). https://doi.org/10.1007/s11694-019-00207-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00207-3

Keywords

Navigation