Skip to main content
Log in

Physicochemical properties of caprine and commercial bovine whey protein concentrate

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Whey protein from caprine milk, a by-product of cheese manufacturing, was recovered by ultrafiltration technology and dried by lyophilization. A caprine whey protein concentrate (WPCc) with 64.60% of protein content was prepared. The physicochemical properties of WPCc samples under different solutions (water or 0.1 M NaCl aqueous solution) and thermal conditions (25 °C and treatment at 90 °C for 30 min) were evaluated and compared with commercial bovine whey protein concentrate (WPCb). The chemical composition and the amino acid profiles were also determined. Both WPCc and WPCb showed high solubility in 0.1 M NaCl (almost 100%) and low solubility (38%) under heat treatment and at pH 5 (close to the isoelectric point). WPCc had a greater content of free sulfhydryl groups and higher positive and negative zeta potentials at extreme pH values than WPCb; however, the surface hydrophobicity of WPCc was lower. With respect to bovine whey protein concentrate, the caprine whey proteins presented higher amounts of basic amino acid and also of isoleucine, methionine, glycine and histidine. Results obtained in this work indicated that the caprine whey protein concentrate presents good and similar physicochemical properties to those observed for bovine whey protein concentrate and that it could be used for the same food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Atra, G. Vatai, E. Bekassy-Molnar, A. Balint, Investigation of ultra and nanofiltration for utilization of whey protein and lactose. J. Food Eng. 67, 325–332 (2005)

    Google Scholar 

  2. A. Rektor, G. Vatai, Membrane filtration of Mozzarella whey. Desalination 162, 279–286 (2004)

    CAS  Google Scholar 

  3. V.A. Boumba, L.P. Voutsinas, C.D. Philippopoulos, Composition and nutritional value of commercial dried whey products from feta cheese manufacture. Int. J. Dairy Technol. 54, 141–145 (2001)

    CAS  Google Scholar 

  4. E. Kinsella, D.M. Whitehead, Proteins in whey: chemical, physical and functional properties. Adv. Food Nutr. Res. 33, 343–438 (1989)

    CAS  PubMed  Google Scholar 

  5. M.A.M. Hoffman, G. Sala, C. Olieman, K. de Kruif, Molecular mass distributions of heat-induced β-lactoglobulin agaggregates. J. Agric. Food Chem. 45, 2949–2957 (1997)

    Google Scholar 

  6. M. Abd El-Salam, S. El-Shibiny, A. Salem, Factors affecting the functional properties of whey protein products: a review. Food Rev. Int. 25, 251–270 (2009)

    CAS  Google Scholar 

  7. G.W. Smithers, Whey-ing up the options e Yesterday, today and tomorrow (Review). Int. Dairy J. 48, 2–14 (2015)

    Google Scholar 

  8. M. Cheryan, Ultrafiltration Handbook (Technomic Publishing Co, Lancaster, 1986), p. 174

    Google Scholar 

  9. Association of Official Analytical Chemists, Association of Official Analyst Chemists: Official Methods of Analysis, 18th edn. (Dr. William Horwitz, Gaithersburg, 2005)

    Google Scholar 

  10. C. Baldasso, T. Barros, I. Tessaro, Concentration and purification of whey proteins by ultrafiltration. Desalination 278, 381–386 (2011)

    CAS  Google Scholar 

  11. A. Kato, S. Nakai, Hydrophobicity determined by a fluorescence probe method and its correletion with surface properties of proteins. Biochim Biophys Acta 624(1), 13–20 (1980)

    CAS  PubMed  Google Scholar 

  12. C.V. Morr, B. German, J.E. Kinsella, J.M. Regenstein, J.P. Van Buren, A. Kilara, B.A. Lewis, M.E. Mangino, A collaborative study to develop a standardized food protein solubility procedure. J. Food Sci. 50, 1715–1728 (1985)

    CAS  Google Scholar 

  13. O. Lowry, N. Rosebrough, A.L. Farr, R. Randall, Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    CAS  Google Scholar 

  14. U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)

    CAS  Google Scholar 

  15. T. Beveridge, S.J. Toma, S. Nakai, Determination of SH and SS groups in some food proteins using Ellman's reagent. J. Food Sci. 39, 49–51 (1974)

    CAS  Google Scholar 

  16. T.W. Thannhauser, Y. Konishi, H.A. Scheraga, Sensitive quantitative analysis of disulfide bonds in polypeptides and proteins. Anal. Biochem. 138, 181–188 (1984)

    CAS  PubMed  Google Scholar 

  17. S. Damodaran, Estimation of disulfide bonds using 2-nitro-5 thiosulfobenzoic acid: limitations. Anal. Biochem. 145, 200–204 (1985)

    CAS  PubMed  Google Scholar 

  18. B. Sanmartín, O. Díaz, L. Rodriguez-Turienzo, Á. Cobos, Composition of caprine whey protein concentrates produced by membrane technology after clarification of cheese whey. Small Rumin. Res 105, 186–192 (2012)

    Google Scholar 

  19. D.R. Palatnik, M.V.O. Porcel, U. González, N. Zaritzky, M.E. Campderrós, Recovery of caprine whey protein and its application in a food protein formulation. LWT-Food Sci. Technol. 63, 331–338 (2015)

    CAS  Google Scholar 

  20. H.D. Obermeyer, U. Kulozik, H.G. Kessler, Controlled deposit formation to influence the retention of solutes in reverse osmosis and ultrafiltration. Desalination 90, 161–172 (1993)

    CAS  Google Scholar 

  21. R. Pearce, S. Marshall, J. Dunkerley, Reduction of lipids in whey protein concentrates by microfiltration—effect on functional properties, in New Applications of Membrane Processes, IDF Special Issue No 201 (1991), pp. 118–129

  22. J.L. Casper, W.L. Wendorff, D.L. Thomas, Functional properties of whey protein concentrates from caprine and ovine specialty cheese wheys. J. Dairy Sci. 82(2), 265–271 (1999)

    CAS  Google Scholar 

  23. D. Hwang, S. Damodaran, Selective precipitation of fat globule membranes of cheese whey by saponin and bile salt. J. Agric. Food Chem. 42, 1872–1878 (1994)

    CAS  Google Scholar 

  24. M.E. Pintado, J. Lopes da Silva, F.X. Malcata, Comparative characterization of whey protein concentrates from ovine, caprine and bovine breeds. Lebensm.-Wiss. Technol. 32, 231–237 (1999)

    CAS  Google Scholar 

  25. L. Posati, M. Orr, Composition of foods, dairy and eggs products, in Agriculture Handbook, No. 8–1 (USDA-ARS, Consumer and Food Economics Institute Publishers, Washington, DC, 1976), pp. 77–109

  26. L.S. Ceballos, E.R. Morales, G. de la Torre Adarve, J.D. Castro, L.P. Martínez, M.R.S. Sampelayo, Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. J. Food Compos. Anal. 22, 322–329 (2009)

    CAS  Google Scholar 

  27. A.A. Rohini, N. Agrawal, H. Kumar, V. Kumar, Emerging role of branched chain amino acids in metabolic disorders: a mechanistic review. Pharma Nutr. 6(2), 47–54 (2018)

    Google Scholar 

  28. R.F. Grimble, The effects of sulfur amino acid intake on immune function in humans. J. Nutr 136(6), 1660S–1665S (2006)

    CAS  PubMed  Google Scholar 

  29. J. Marchalonis, J. Weltman, Relatedness among proteins: a new method of estimation and its application to immunoglobulin. Comp. Biochem. Physiol. 38B, 609 (1971)

    Google Scholar 

  30. Z. Wu, J. Wu, R. Zhang, S. Yuan, Q. Lu, Y. Yu, Colloid properties of hydrophobic modified alginate: surface tension, ζ-potential, viscosity and emulsification. Carbohydr. Polym. 181, 56–62 (2018)

    CAS  PubMed  Google Scholar 

  31. I. Morrison, S. Ross, Colloidal Dispersions; Suspensions, Emulsions and Foams (Wiley, New York, 2002)

    Google Scholar 

  32. S. Laiho, D. Ercili-Cura, P. Forssell, P. Myll€arinen, R. Partanen, The effect of dynamic heat treatments of native whey protein concentrate on its dispersion characteristics. Int. Dairy J. 49, 139–147 (2015)

    CAS  Google Scholar 

  33. K.P. Das, J.E. Kinsella, pH dependent emulsifying properties of B-lactoglobulin. J. Dispers. Sci. Technol. 10, 77–102 (1989)

    CAS  Google Scholar 

  34. N. Sava, I. Van der Plancken, W. Claeys, M. Hendrickx, The kinetics of heat-induced structural changes of β-lactoglobulin. J. Dairy Sci. 88, 1646–1653 (2005)

    CAS  PubMed  Google Scholar 

  35. N. Alizadeh-Pasdar, E.C.Y. Li-Chan, Comparison of protein surface hydrophobicity measured at various pH values using three different fluorescent probes. J. Agric. Food Chem. 48, 328–334 (2000)

    CAS  PubMed  Google Scholar 

  36. M.N. Afizah, S.S. Rizvi, Functional properties of whey protein concentrate texturized at acidic pH: effect of extrusion temperature. LWT-Food Sci. Technol. 57, 290–298 (2014)

    Google Scholar 

  37. J. Zayas, Functionality of Proteins in Food (Springer, Berlin, 1997)

    Google Scholar 

  38. B. Sanmartín, O. Díaz, L. Rodríguez-Turienzo, A. Cobos, Functional properties of caprine whey protein concentrates obtained from clarified cheese whey. Small Rumin. Res. 110, 52–56 (2013)

    Google Scholar 

  39. O. Robin, S. Turgeon, P. Paquin, Functional properties of milk proteins, in Dairy Science and Technology Handbook: Principles and Properties, ed. by Y.H. Hui (VCH Publischers Inc., New York, 1993), pp. 277–353

    Google Scholar 

  40. F. Vojdani, Solubility, in Methods of Testing Protein Functionality, ed. by G.M. Hall (Chapman & Hall, London, 1996), pp. 11–60

    Google Scholar 

  41. D. Mulvihill, M. Donovan, Whey proteins and their thermal denaturation—a review. Ir J. Food Sci. Technol. 11, 43–75 (1987)

    CAS  Google Scholar 

  42. B. Vardhanabhuti, E.A. Foegeding, Rheological properties and characterization of polymerized whey protein isolates. J. Agric. Food Chem. 47, 3649–3655 (1999)

    CAS  PubMed  Google Scholar 

  43. A. Moro, C. Gatti, N. Delorenzi, Hydrophobicity of whey protein concentrates measured by fluorescence quenching and its relation with surface functional properties. J. Agric. Food Chem. 49, 4784–4789 (2001)

    CAS  PubMed  Google Scholar 

  44. K. Shimada, J.C. Cheftel, Determination of sulfhydryl groups and disulfide bonds in heat-induced gels of soy protein isolate. J. Agric. Food Chem. 36, 147–153 (1988)

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by the CICyT-UNSE (Project 23/A160) and PICT-O/2012 N° 0002 (ANPCyT) and also the fellowship of PhD Carolina Anabel Ayunta from CONICET (Argentina) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura B. Iturriaga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayunta, C.A., Quinzio, C.M., Puppo, M.C. et al. Physicochemical properties of caprine and commercial bovine whey protein concentrate. Food Measure 13, 2729–2739 (2019). https://doi.org/10.1007/s11694-019-00194-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00194-5

Keywords

Navigation