Skip to main content
Log in

Optimization of gamma-aminobutyric acid production in a model system containing soy protein and inulin by Lactobacillus brevis fermentation

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Gamma-aminobutyric acid (GABA) is an active bio-compound with versatile physiological functions and, therefore, considerable attention is given to developing GABA-enriched functional foods. In this study, central composite design was used to optimize the fermentation conditions to obtain the highest GABA yield by Lactobacillus brevis. The optimal conditions of GABA production (1473.44 ppm) included 5% soy protein isolate, 3% inulin, and 96 h fermenting time at 37 °C. GABA-rich fermented solution (GABA-EFS) under optimal conditions had an appropriate emulsifying activity and water/oil holding capacity. Also, the reducing power assay revealed that GABA-EFS has electron donor groups with the ability to terminate the free radical chain reactions. Minimum inhibitory concentration results showed that Candida albicans was the most sensitive microorganism; whilst, Staphylococcus aureus and Listeria innocua were the most resistant bacteria towards GABA-EFS. In addition, GABA production was confirmed by pre-staining thin layer chromatography and fourier transform infrared spectroscopy. The results suggested that the GABA-EFS could be applied in the food industry as a functional product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. L. Day, R.B. Seymour, K.F. Pitts, I. Konczak, L. Lundin, Incorporation of functional ingredients into foods. Trends Food Sci. Technol. 20(9), 388–395 (2009)

    CAS  Google Scholar 

  2. S.H. Al-Sheraji, A. Ismail, M.Y. Manap, S. Mustafa, R.M. Yusof, F.A. Hassan, Prebiotics as functional foods: a review. J. Funct. Foods 5(4), 1542–1553 (2013)

    CAS  Google Scholar 

  3. J.M. Villegas, L. Brown, G.S. de Giori, E.M. Hebert, Optimization of batch culture conditions for GABA production by Lactobacillus brevis CRL 1942, isolated from quinoa sourdough. LWT-Food Sci. Technol. 67, 22–26 (2016)

    CAS  Google Scholar 

  4. K. Mahmood, H. Kamilah, A.K. Alias, F. Ariffin, Nutritional and therapeutic potentials of rambutan fruit (Nephelium lappaceum L.) and the by-products: a review. J. Food Meas. Charact. 12, 1556–1571 (2018)

    Google Scholar 

  5. K.B. Park, S.H. Oh, Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract. Bioresour. Technol. 98(8), 1675–1679 (2007)

    CAS  PubMed  Google Scholar 

  6. R. Dhakal, V.K. Bajpai, K.H. Baek, Production of GABA (γ-aminobutyric acid) by microorganisms: a review. Braz. J. Microbiol. 43(4), 1230–1241 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. H. Li, Y. Cao, Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39(5), 1107–1116 (2010)

    CAS  Google Scholar 

  8. H. Li, T. Qiu, D. Gao, Y. Cao, Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912. Amino Acids 38(5), 1439–1445 (2010)

    CAS  PubMed  Google Scholar 

  9. H. Jooyandeh, Soy products as healthy and functional foods. Middle East J. Sci. Res. 7(1), 71–80 (2011)

    Google Scholar 

  10. R. Karimi, M.H. Azizi, M. Ghasemlou, M. Vaziri, Application of inulin in cheese as prebiotic, fat replacer and texturizer: a review. Carbohydr. Polym. 119, 85–100 (2015)

    CAS  PubMed  Google Scholar 

  11. M.A. Mensink, H.W. Frijlink, K. van der Voort Maarschalk, W.L. Hinrichs, Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics. Carbohydr. Polym. 130, 405–419 (2015)

    CAS  PubMed  Google Scholar 

  12. J.M. Berg, J.L. Tymoczko, L. Stryer, Biochemistry, 5th edn. (W H freeman, New York, 2002)

    Google Scholar 

  13. H. Li, T. Qiu, Y. Cao, J. Yang, Z. Huang, Pre-staining paper chromatography method for quantification of γ-aminobutyric acid. J. Chromatogr. A 1216(25), 5057–5060 (2009)

    CAS  PubMed  Google Scholar 

  14. N.T. Hoyle, J.H. Merritt, Quality of fish protein hydrolysates from herring (Clupea harengus). J. Food Sci. 59(1), 76–79 (1994)

    CAS  Google Scholar 

  15. J. Adler-Nissen, Enzymic Hydrolysis of Food Proteins, 1st edn. (Elsevier Applied Science, London, 1986), pp. 110–169

    Google Scholar 

  16. B.A. Behbahani, F. Shahidi, F.T. Yazdi, S.A. Mortazavi, M. Mohebbi, Antioxidant activity and antimicrobial effect of tarragon (Artemisia dracunculus) extract and chemical composition of its essential oil. J. Food Meas. Charact. 11(2), 847–863 (2017)

    Google Scholar 

  17. B.A. Behbahani, F. Shahidi, F.T. Yazdi, S.A. Mortazavi, M. Mohebbi, Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. Int. J. Biol. Macromol. 94, 515–526 (2017)

    CAS  PubMed  Google Scholar 

  18. M. Noshad, M. Hojjati, B.A. Behbahani, Black Zira essential oil: chemical compositions and antimicrobial activity against the growth of some pathogenic strain causing infection. Microb. Pathog. 116, 153–157 (2018)

    CAS  PubMed  Google Scholar 

  19. X. Li, X. Shi, Y. Jin, F. Ding, Y. Du, Controllable antioxidative xylan–chitosan Maillard reaction products used for lipid food storage. Carbohydr. Polym. 91(1), 428–433 (2013)

    CAS  Google Scholar 

  20. J. Xie, M. Du, M. Shen, T. Wu, L. Lin, Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate). Food Chem. 270, 243–250 (2019)

    CAS  PubMed  Google Scholar 

  21. Q. Deng, L. Wang, F. Wei, B. Xie, F. Huang, W. Huang, J. Shin, Q. Huang, B. Tian, S. Xue, Functional properties of protein isolates, globulin and albumin extracted from Ginkgo biloba seeds. Food Chem. 124(4), 1458–1465 (2011)

    CAS  Google Scholar 

  22. D. Betancur-Ancona, G. Peraza-Mercado, Y. Moguel-Ordonez, S. Fuertes-Blanco, Physicochemical characterization of lima bean (Phaseolus lunatus) and Jack bean (Canavalia ensiformis) fibrous residues. Food Chem. 84(2), 287–295 (2004)

    CAS  Google Scholar 

  23. T.J. Kim, C.H. Sung, Y.J. Kim, B.M. Jung, E.R. Kim, W.S. Choi, H.K. Jung, H.N. Chun, W.J. Kim, S.H. Yoo, Effects of a soaking-fermentation-drying process on the isoflavone and γ-aminobutyric acid contents of soybean. Food Sci. Biotechnol. 16(1), 83–89 (2007)

    Google Scholar 

  24. H. Aoki, I. Uda, K. Tagami, Y. Furuya, Y. Endo, K. Fujimoto, The production of a new tempeh-like fermented soybean containing a high level of γ-aminobutyric acid by anaerobic incubation with Rhizopus. Biosci. Biotechnol. Biochem. 67(5), 1018–1023 (2003)

    CAS  PubMed  Google Scholar 

  25. J.Y. Kim, M.Y. Lee, G.E. Ji, Y.S. Lee, K.T. Hwang, Production of γ-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. Int. J. Food Microbiol. 130(1), 12–16 (2009)

    CAS  PubMed  Google Scholar 

  26. E. Barrett, R.P. Ross, P.W. O’toole, G.F. Fitzgerald, C. Stanton, γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113(2), 411–417 (2012)

    CAS  PubMed  Google Scholar 

  27. N. Komatsuzaki, J. Shima, S. Kawamoto, H. Momose, T. Kimura, Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol. 22(6), 497–504 (2005)

    CAS  Google Scholar 

  28. I. Amadou, G.W. Le, Y.H. Shi, S. Jin, Reducing, radical scavenging, and chelation properties of fermented soy protein meal hydrolysate by Lactobacillus plantarum Lp6. Int. J. Food Prop. 14(3), 654–665 (2011)

    CAS  Google Scholar 

  29. T.Ž. Krunić, N.S. Obradović, M.B. Rakin, Application of whey protein and whey protein hydrolysate as protein based carrier for probiotic starter culture. Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2019.04.062

    Article  PubMed  Google Scholar 

  30. B. Alizadeh Behbahani, A.A. Imani Fooladi, Development of a novel edible coating made by Balangu seed mucilage and Feverfew essential oil and investigation of its effect on the shelf life of beef slices during refrigerated storage through intelligent modeling. J. Food Saf. 38, e12443 (2018)

    Google Scholar 

  31. A.A. Rushdy, E.Z. Gomaa, Antimicrobial compounds produced by probiotic Lactobacillus brevis isolated from dairy products. Ann. Microbiol. 63(1), 81–90 (2013)

    CAS  Google Scholar 

  32. S. Sanjukta, A.K. Rai, Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends Food Sci. Technol. 50, 1–10 (2016)

    CAS  Google Scholar 

  33. F.C.S. Vasconcellos, A.L. Woiciechowski, V.T. Soccol, D. Mantovani, C.R. Soccol, Antimicrobial and antioxidant properties of-conglycinin and glycinin from soy protein isolate. Int. J. Curr. Microbiol. Appl. Sci. 3(8), 144–157 (2014)

    CAS  Google Scholar 

  34. M. Zasloff, Antimicrobial peptides of multicellular organisms. Nature 415(6870), 389–395 (2002)

    CAS  Google Scholar 

  35. K. Matsuzaki, Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta 1788(8), 1687–1692 (2009)

    CAS  PubMed  Google Scholar 

  36. C.F. De Oliveira, A.P.F. Corrêa, D. Coletto, D.J. Daroit, F. Cladera-Olivera, A. Brandelli, Soy protein hydrolysis with microbial protease to improve antioxidant and functional properties. J. Food Sci. Technol. 52(5), 2668–2678 (2015)

    PubMed  Google Scholar 

  37. R. Farng, S. Mrha, U.S. Patent No. 7,928,147 (U.S. Patent and Trademark Office, Washington, DC, 2011)

  38. X. Wang, G.R. Gibson, Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J. Appl. Bacteriol. 75(4), 373–380 (1993)

    CAS  PubMed  Google Scholar 

  39. M. Mohammadian, A. Madadlou, Characterization of fibrillated antioxidant whey protein hydrolysate and comparison with fibrillated protein solution. Food Hydrocoll. 52, 221–230 (2016)

    CAS  Google Scholar 

  40. L. Khadidja, C. Asma, B. Mahmoud, E. Meriem, Alginate/gelatin crosslinked system through Maillard reaction: preparation, characterization and biological properties. Polym. Bull. 74(12), 4899–4919 (2017)

    CAS  Google Scholar 

  41. B. Kong, Y.L. Xiong, Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action. J. Agric. Food Chem. 54(16), 6059–6068 (2006)

    CAS  PubMed  Google Scholar 

  42. Y. Li, B. Jiang, T. Zhang, W. Mu, J. Liu, Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chem. 106(2), 444–450 (2008)

    CAS  Google Scholar 

  43. X. Peng, B. Kong, X. Xia, Q. Liu, Reducing and radical-scavenging activities of whey protein hydrolysates prepared with Alcalase. Int. Dairy J. 20(5), 360–365 (2010)

    CAS  Google Scholar 

  44. H.C. Wu, H.M. Chen, C.Y. Shiau, Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 36(9–10), 949–957 (2003)

    CAS  Google Scholar 

  45. N. Cumby, Y. Zhong, M. Naczk, F. Shahidi, Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chem. 109(1), 144–148 (2008)

    CAS  PubMed  Google Scholar 

  46. C.Y. Chang, K.C. Wu, S.H. Chiang, Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates. Food Chem. 100(4), 1537–1543 (2007)

    CAS  Google Scholar 

  47. K. Saito, D.H. Jin, T. Ogawa, K. Muramoto, E. Hatakeyama, T. Yasuhara, K. Nokihara, Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. J. Agric. Food Chem. 51(12), 3668–3674 (2003)

    CAS  PubMed  Google Scholar 

  48. J.H. Yang, J.L. Mau, P.T. Ko, L.C. Huang, Antioxidant properties of fermented soybean broth. Food Chem. 71(2), 249–254 (2000)

    CAS  Google Scholar 

  49. K.N. Pearce, J.E. Kinsella, Emulsifying properties of proteins: evaluation of a turbidimetric technique. J. Agric. Food Chem. 26(3), 716–723 (1978)

    CAS  Google Scholar 

  50. S. Jung, P.A. Murphy, L.A. Johnson, Physicochemical and functional properties of soy protein substrates modified by low levels of protease hydrolysis. J. Food Sci. 70(2), C180–C187 (2005)

    CAS  Google Scholar 

  51. G.A. Gbogouri, M. Linder, J. Fanni, M. Parmentier, Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. J. Food Sci. 69(8), C615–C622 (2004)

    CAS  Google Scholar 

  52. S. Barbut, Determining Water and Fat Holding. Methods of Testing Protein Functionality (Springer, Berlin, 1999), pp. 186–225

    Google Scholar 

  53. A. Achouri, W. Zhang, X. Shiying, Enzymatic hydrolysis of soy protein isolate and effect of succinylation on the functional properties of resulting protein hydrolysates. Food Res. Int. 31(9), 617–623 (1998)

    CAS  Google Scholar 

  54. M.A. Mune Mune, Influence of degree of hydrolysis on the functional properties of cowpea protein hydrolysates. J. Food Process. Preserv. 39(6), 2386–2392 (2015)

    CAS  Google Scholar 

  55. J. Yu, G. Wang, X. Wang, Y. Xu, S. Chen, X. Wang, L. Jiang, Improving the freeze-thaw stability of soy protein emulsions via combing limited hydrolysis and Maillard-induced glycation. LWT-Food Sci. Technol. 91, 63–69 (2018)

    CAS  Google Scholar 

  56. M.C. Gómez-Guillén, M.E. López Caballero, A. Alemán, A.L. de Lacey, B. Giménez, P. Montero García, Antioxidant and antimicrobial peptide fractions from squid and tuna skin gelatin, in Sea By-Products as Real Material: New Ways of Application, ed. by E. Le Bihan (Transworld Research Network Signpost, Kerala, 2010), pp. 89–115

    Google Scholar 

  57. A. Barth, Infrared spectroscopy of proteins. Biochim. Biophys. Acta 1767(9), 1073–1101 (2007)

    CAS  PubMed  Google Scholar 

  58. J. Yu, G. Wang, X. Wang, Y. Xu, S. Chen, X. Wang, L. Jiang, Improving the freeze-thaw stability of soy protein emulsions via combing limited hydrolysis and Maillard-induced glycation. LWT 91, 63–69 (2018)

    CAS  Google Scholar 

  59. K. Elavarasan, B.A. Shamasundar, F. Badii, N. Howell, Angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of oven-and freeze-dried protein hydrolysate from fresh water fish (Cirrhinus mrigala). Food Chem. 206, 210–216 (2016)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors of this paper acknowledge the support of Ferdowsi University of Mashhad (FUM) through Project 46386.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farideh Tabatabaei Yazdi.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zareie, Z., Tabatabaei Yazdi, F. & Mortazavi, S.A. Optimization of gamma-aminobutyric acid production in a model system containing soy protein and inulin by Lactobacillus brevis fermentation. Food Measure 13, 2626–2636 (2019). https://doi.org/10.1007/s11694-019-00183-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00183-8

Keywords

Navigation