Skip to main content
Log in

Analysis of triacylglycerols molecular species composition, total fatty acids, and sn-2 fatty acids positional distribution in different types of milk powders

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Triacylglycerols (TAGs) are considered the main component of milk fat; possess significant functional roles from the technological, nutritional and physiological points of view. In this study, an ultra-performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry was applied to identify the molecular species composition of TAGs in buffalo, camel, and ewe milk powders. The separation of TAGs was achieved by using two mobile phases; acetonitrile/isopropanol (1:9, v/v) as mobile phase A, and 40% acetonitrile as mobile phase B, the binary gradient elution allowed the separation of milk TAGs in consistent with the increase in partition number. More than 180 TAGs in buffalo milk, 90 TAGs in camel milk, and 129 TAGs in ewe milk were unambiguously identified, and the most abundant molecular species in the three types of milk powders were detected at mass to charge (m/z) values of 682.53, 822.67, and 656.53, respectively. The total acyl carbon numbers of buffalo milk TAGs ranged between 26 and 54, with double bonds from 0 to 6. While, the total acyl carbon numbers of camel milk TAGs ranged between 42 and 54, with double bonds from 0 to 3. The total acyl carbon numbers of ewe milk TAGs ranged between 26 and 52, with double bonds from 0 to 2. The major fatty acids (FAs) in the different types of milk powders were myristic, palmitic, stearic, oleic, and linoleic. The positional distribution of saturated FAs at the sn-2 position was higher in buffalo milk powder as compared to camel and ewe milk powders. This study reports a comprehensive identification of TAGs molecular species in different types of milk powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. MacGibbon A, Taylor M (2006) Composition and structure of bovine milk lipids. In: Advanced Dairy Chemistry. Lipids, vol 2. Springer, Boston, pp 1–42

  2. R. Kanwal, T. Ahmed, B. Mirza, Comparative analysis of quality of milk collected from buffalo, cow, goat and sheep of Rawalpindi/Islamabad region in Pakistan. Asian J. Plant Sci. 3(3), 300–305 (2004)

    Article  Google Scholar 

  3. A. Tanamati, C.C. Oliveira, J.V. Visentainer, M. Matsushita, N.E. de Souza, Comparative study of total lipids in beef using chlorinated solvent and low-toxicity solvent methods. J. Am. Oil Chem. Soc. 82(6), 393–397 (2005)

    Article  CAS  Google Scholar 

  4. M.C. Milinsk, M. Matsushita, J.V. Visentainer, C.C. de Oliveira, N.E. de Souza, Comparative analysis of eight esterification methods in the quantitative determination of vegetable oil fatty acid methyl esters (FAME). J. Braz. Chem. Soc. 19(8), 1475–1483 (2008)

    Article  CAS  Google Scholar 

  5. C. Ruiz-Samblás, F. Marini, L. Cuadros-Rodríguez, A. González-Casado, Quantification of blending of olive oils and edible vegetable oils by triacylglycerol fingerprint gas chromatography and chemometric tools. J. Chromatogr. B 910, 71–77 (2012)

    Article  Google Scholar 

  6. C. Ruiz-Samblás, A. González-Casado, L. Cuadros-Rodríguez, F.R. García, Application of selected ion monitoring to the analysis of triacylglycerols in olive oil by high temperature-gas chromatography/mass spectrometry. Talanta 82(1), 255–260 (2010)

    Article  PubMed  Google Scholar 

  7. J. Fontecha, H. Goudjil, J. Ríos, M. Fraga, M. Juárez, Identity of the major triacylglycerols in ovine milk fat. Int. Dairy J. 15(12), 1217–1224 (2005)

    Article  CAS  Google Scholar 

  8. J. Fontecha, J. Ríos, L. Lozada, M. Fraga, M. Juárez, Composition of goat’s milk fat triglycerides analysed by silver ion adsorption–TLC and GC–MS. Int. Dairy J. 10(1), 119–128 (2000)

    Article  CAS  Google Scholar 

  9. M. Beccaria, G. Sullini, F. Cacciola, P. Donato, P. Dugo, L. Mondello, High performance characterization of triacylglycerols in milk and milk-related samples by liquid chromatography and mass spectrometry. J. Chromatogr. A 1360, 172–187 (2014)

    Article  CAS  Google Scholar 

  10. M. Holčapek, P. Jandera, P. Zderadička, L. Hruba, Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A 1010(2), 195–215 (2003)

    Article  PubMed  Google Scholar 

  11. M. Lisa, M. Holčapek, M. Boháč, Statistical evaluation of triacylglycerol composition in plant oils based on high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry data. J. Agric. Food Chem. 57(15), 6888–6898 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. M. Holčapek, H. Dvořáková, M. Lísa, A.J. Girón, P. Sandra, J. Cvačka, Regioisomeric analysis of triacylglycerols using silver-ion liquid chromatography–atmospheric pressure chemical ionization mass spectrometry: comparison of five different mass analyzers. J. Chromatogr. A 1217(52), 8186–8194 (2010)

    Article  PubMed  Google Scholar 

  13. I. Haddad, M. Mozzon, R. Strabbioli, N.G. Frega, Electrospray ionization tandem mass spectrometry analysis of triacylglycerols molecular species in camel milk (Camelus dromedarius). Int. Dairy J. 21(2), 119–127 (2011)

    Article  CAS  Google Scholar 

  14. G. Andreotti, E. Trivellone, R. Lamanna, A. Di Luccia, A. Motta, Milk identification of different species: 13C-NMR spectroscopy of triacylglycerols from cows and buffaloes’ milks. J. Dairy Sci. 83(11), 2432–2437 (2000)

    Article  CAS  PubMed  Google Scholar 

  15. G. Picariello, R. Sacchi, O. Fierro, D. Melck, R. Romano, A. Paduano, A. Motta, F. Addeo, High resolution 13C NMR detection of short- and medium-chain synthetic triacylglycerols used in butterfat adulteration. Eur. J. Lipid Sci. Technol. 115(8), 858–864 (2013)

    Article  CAS  Google Scholar 

  16. P. Laakso, P. Manninen, Identification of milk fat triacylglycerols by capillary supercritical fluid chromatography–atmospheric pressure chemical ionization mass spectrometry. Lipids 32(12), 1285–1295 (1997)

    Article  CAS  PubMed  Google Scholar 

  17. K.L. Ross, S.L. Hansen, T. Tu, Reversed-phase analysis of triacylglycerols by ultra performance liquid chromatography–evaporative light scattering detection (UPLC–ELSD). Lipid Technol. 23(1), 14–16 (2011)

    Article  CAS  Google Scholar 

  18. J.S. Park, M.Y. Jung, Development of high-performance liquid chromatography–time-of-flight mass spectrometry for the simultaneous characterization and quantitative analysis of gingerol-related compounds in ginger products. J. Agric. Food Chem. 60(40), 10015–10026 (2012)

    Article  CAS  PubMed  Google Scholar 

  19. H. Shi, H. Yang, X. Zhang, Y. Sheng, H. Huang, L. Yu, Isolation and characterization of five glycerol esters from Wuhan propolis and their potential anti-inflammatory properties. J. Agric. Food Chem. 60(40), 10041–10047 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. T. Zhang, F. Lou, G. Tao, R. Liu, M. Chang, Q. Jin, X. Wang, Composition and structure of single cell oil produced by Schizochytrium limacinum SR31. J. Am. Oil Chem. Soc. 93(10), 1337–1346 (2016)

    Article  CAS  Google Scholar 

  21. J. Folch, M. Lees, G. Sloane-Stanley, A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226(1), 497–509 (1957)

    CAS  Google Scholar 

  22. F. Luddy, R. Barford, S. Herb, P. Magidman, R. Riemenschneider, Pancreatic lipase hydrolysis of triglycerides by a semimicro technique. J. Am. Oil Chem. Soc. 41(10), 693–696 (1964)

    Article  CAS  Google Scholar 

  23. V. Ruiz-Gutierrez, L. Barron, Methods for the analysis of triacylglycerols. J. Chromatogr. B 671(1), 133–168 (1995)

    Article  CAS  Google Scholar 

  24. H.R. Mottram, S.E. Woodbury, R.P. Evershed, Identification of triacylglycerol positional isomers present in vegetable oils by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom. 11(12), 1240–1252 (1997)

    Article  CAS  Google Scholar 

  25. H.R. Mottram, R.P. Evershed, Elucidation of the composition of bovine milk fat triacylglycerols using high-performance liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A 926(2), 239–253 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. M. Lísa, H. Velínská, M. Holčapek, Regioisomeric characterization of triacylglycerols using silver-ion HPLC/MS and randomization synthesis of standards. Anal. Chem. 81(10), 3903–3910 (2009)

    Article  PubMed  Google Scholar 

  27. C. Beermann, J. Jelinek, T. Reinecker, A. Hauenschild, G. Boehm, H. Klör, Short term effects of dietary medium-chain fatty acids and n-3 long-chain polyunsaturated fatty acids on the fat metabolism of healthy volunteers. Lipids Health Dis. 2(1), 10 (2003)

    Article  PubMed  PubMed Central  Google Scholar 

  28. J. Gresti, M. Bugaut, C. Maniongui, J. Bezard, Composition of molecular species of triacylglycerols in bovine milk fat. J. Dairy Sci. 76(7), 1850–1869 (1993)

    Article  CAS  PubMed  Google Scholar 

  29. X. Zou, J. Huang, Q. Jin, Z. Guo, Y. Liu, L. Cheong, X. Xu, X. Wang, Lipid composition analysis of milk fats from different mammalian species: potential for use as human milk fat substitutes. J. Agric. Food Chem. 61(29), 7070–7080 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. A. Kuksis, M. McCarthy, J. Beveridge, Triglyceride composition of native and rearranged butter and coconut oils. J. Am. Oil Chem. Soc. 41(3), 201–205 (1964)

    Article  CAS  Google Scholar 

  31. P.W. Parodi, Stereospecific distribution of fatty acids in bovine milk fat triglycerides. J. Dairy Res. 46(01), 75–81 (1979)

    Article  CAS  Google Scholar 

  32. D. Kritchevsky, Effects of triglyceride structure on lipid metabolism. Nutr. Rev. 46(5), 177–181 (1988)

    Article  CAS  PubMed  Google Scholar 

  33. D.M. Small, The effects of glyceride structure on absorption and metabolism. Annu. Rev. Nutr. 11(1), 413–434 (1991)

    Article  CAS  PubMed  Google Scholar 

  34. T. Redgrave, D. Kodali, D. Small, The effect of triacyl-sn-glycerol structure on the metabolism of chylomicrons and triacylglycerol-rich emulsions in the rat. J. Biol. Chem. 263(11), 5118–5123 (1988)

    CAS  PubMed  Google Scholar 

  35. I. Haddad, M. Mozzon, R. Strabbioli, N.G. Frega, Stereospecific analysis of triacylglycerols in camel (Camelus dromedarius) milk fat. Int. Dairy J. 20(12), 863–867 (2010)

    Article  CAS  Google Scholar 

  36. F. Blasi, D. Montesano, M. De Angelis, A. Maurizi, F. Ventura, L. Cossignani, M. Simonetti, P. Damiani, Results of stereospecific analysis of triacylglycerol fraction from donkey, cow, ewe, goat and buffalo milk. J. Food Compos. Anal. 21(1), 1–7 (2008)

    Article  CAS  Google Scholar 

  37. A.H. Ali, X. Zou, J. Huang, S.M. Abed, G. Tao, Q. Jin, X. Wang, Profiling of phospholipids molecular species from different mammalian milk powders by using ultra-performance liquid chromatography–electrospray ionization–quadrupole-time of flight-mass spectrometry. J. Food Compos. Anal. 62, 143–154 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of People’s Republic of China (31601433) and Jiangsu Provincial Natural Science Foundation (BK20140149).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdelmoneim H. Ali or Xingguo Wang.

Ethics declarations

Conflict of interest:

The authors declare that there is no conflict of interests regarding the publication of this article.

Ethical approval:

This article does not contain any studies with human or animals and complies with ethical requirements.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A.H., Abd El-Wahed, E.M., Abed, S.M. et al. Analysis of triacylglycerols molecular species composition, total fatty acids, and sn-2 fatty acids positional distribution in different types of milk powders. Food Measure 13, 2613–2625 (2019). https://doi.org/10.1007/s11694-019-00182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00182-9

Keywords

Navigation