Skip to main content
Log in

Effect of extraction solvents on lipid peroxidation, antioxidant, antibacterial and antifungal activities of Berberis orthobotrys Bienerat ex C.K. Schneider

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Berberis orthobotrys Bienerat ex C.K. Schneider (BOB) is broadly utilized as a medicinal plant in Asia. In present work, various solvents (water, methanol, ethanol) were used as solvent in the extraction of BOB. Then, total phenol, flavonoid and tannin contents of dried BOB were investigated. Additionally, in vitro and antioxidant capacities and antibacterial and antifungal activities of different solvent extracts were also evaluated. The extract obtained by 80% methanol had the maximum amount of total phenolic, flavonoid and tannin contents, while, the minimum amount of these compounds were obtained for aqueous extract of BOB. It was found that the anti-DPPH radical activity and reducing power of methanolic extract were higher than other samples. The effect of BOB extract on the oxidation of sunflower oil demonstrated that BOB can inhibit the oxidative reactions. The evaluation of antibacterial and antifungal activities of different BOB extracts exhibited that methanolic extract had significant inhibition activity against tested bacteria and fungus. In conclusion, BOB can be used as a potential source of natural antioxidant and antibacterial agent for food and pharmaceutical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D.M. Micić, S.B. Ostojić, M.B. Simonović, G. Krstić, L.L. Pezo, B.R. Simonović, Thermochim. Acta 601, 39–44 (2015)

    Article  CAS  Google Scholar 

  2. M.P. Kähkönen, A.I. Hopia, H.J. Vuorela, J.-P. Rauha, K. Pihlaja, T.S. Kujala, M. Heinonen, J. Agric. Food Chem. 47(10), 3954–3962 (1999). https://doi.org/10.1021/jf990146l

    Article  CAS  PubMed  Google Scholar 

  3. N. Turkmen, F. Sari, Y.S. Velioglu, Food Chem. 99, 835–841 (2006). https://doi.org/10.1016/j.foodchem.2005.08.034

    Article  CAS  Google Scholar 

  4. I.I. Koleva, T.A. Van Beek, J.P. Linssen, A.d. Groot, L.N. Evstatieva, Phytochem. Anal. 13, 8–17 (2002). https://doi.org/10.1002/pca.611

    Article  CAS  PubMed  Google Scholar 

  5. B. Lapornik, M. Prošek, A.G. Wondra, J Food Eng. 71, 214–222 (2005). https://doi.org/10.1016/j.jfoodeng.2004.10.036

    Article  Google Scholar 

  6. R. Manian, N. Anusuya, P. Siddhuraju, S. Manian, Food Chem. 107, 1000–1007 (2008). https://doi.org/10.1016/j.foodchem.2007.09.008

    Article  CAS  Google Scholar 

  7. S.K. Dokht, Z.E. Djomeh, M.S. Yarmand, M. Fathi, Int. J. Biol. Macromol. (2018) https://doi.org/10.1016/j.ijbiomac.2018.06.069

    Article  Google Scholar 

  8. S. Hossaini, G. Abarsaji, Iranian J. Med. Arom. Plants 24, 472–499 (2009).

    Google Scholar 

  9. D. Salarbashi, B.S.F. Bazzaz, M.M. Karimkhani, Z.S. Noghabi, F. Khanzadeh, A. Sahebkar, Ind. Crop Prod. 55, 163–172 (2014). https://doi.org/10.1016/j.indcrop.2014.01.044

    Article  CAS  Google Scholar 

  10. E.A. Hayouni, M. Abedrabba, M. Bouix, M. Hamdi, Food Chem. 105, 1126–1134 (2007). https://doi.org/10.1016/j.foodchem.2007.02.010

    Article  CAS  Google Scholar 

  11. K.M. Yoo, C.H. Lee, H. Lee, B. Moon, C.Y. Lee, Food Chem. 106, 929–936 (2008). https://doi.org/10.1016/j.foodchem.2007.07.006

    Article  CAS  Google Scholar 

  12. D. Khlifi, R.M. Sghaier, S. Amouri, D. Laouini, M. Hamdi, J. Bouajila, Food Chem. Toxicol. 55, 202–208 (2013). https://doi.org/10.1016/j.fct.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  13. J. Kukić, S. Petrović, M. Niketić, Biol. Pharma Bull. 29, 725–729 (2006). https://doi.org/10.1248/bpb.29.725

    Article  Google Scholar 

  14. N. Thitilertdecha, A. Teerawutgulrag, N. Rakariyatham, LWT-Food Sci. Technol. 41, 2029–2035 (2008). https://doi.org/10.1016/j.lwt.2008.01.017

    Article  CAS  Google Scholar 

  15. A. Othman, A. Ismail, N.A. Ghani, I. Adenan, Food Chem. 100, 1523–1530 (2007). https://doi.org/10.1016/j.foodchem.2005.12.021

    Article  CAS  Google Scholar 

  16. H. Metrouh-Amir, C.M. Duarte, F. Maiza, Ind. Crop. Prod. 67, 249–256 (2015). https://doi.org/10.1016/j.indcrop.2015.01.049

    Article  CAS  Google Scholar 

  17. V.K. Bajpai, A. Sharma, K.-H. Baek, Food Control 32, 582–590 (2013). https://doi.org/10.1016/j.foodcont.2013.01.032

    Article  CAS  Google Scholar 

  18. N. Shahsavari, M. Barzegar, M.A. Sahari, H. Naghdibadi, Plant Foods Hum. Nutr. 63, 183–188 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. C. Sidwell, H. Salwin, M. Benca, J. Mitchell, J. Am. Oil Chem. Soc. 31, 603–606 (1954)

    Article  CAS  Google Scholar 

  20. AOCS, in: Firestone D. Champaign, IL, US: AOCS (1989)

  21. I. Karaman, F. Şahin, M. Güllüce, H. Öǧütçü, M. Şengül, A. Adıgüzel, J. Ethnopharmacol. 85, 231–235 (2003) https://doi.org/10.1016/S0378-8741(03)00006-0

    Article  CAS  PubMed  Google Scholar 

  22. A. Kumar, R. Shukla, P. Singh, N.K. Dubey, Food Chem. Toxicol. 48, 539–543 (2010) https://doi.org/10.1016/j.fct.2009.11.028

    Article  CAS  PubMed  Google Scholar 

  23. A. Sen, A. Batra, Int. J. Curr. Pharm. Res. 4, 67–73 (2012)

    Google Scholar 

  24. M. Bordoloi, P.K. Bordoloi, P.P. Dutta, V. Singh, S. Nath, B. Narzary, P.D. Bhuyan, P.G. Rao, I.C. Barua, J. Funct. Food 23, 220–229 (2016) https://doi.org/10.1016/j.jff.2016.02.028

    Article  CAS  Google Scholar 

  25. C.D. Stalikas, J. Sep. Sci. 30, 3268–3295 (2007) https://doi.org/10.1002/jssc.200700261

    Article  CAS  PubMed  Google Scholar 

  26. Q.D. Do, A.E. Angkawijaya, P.L. Tran-Nguyen, L.H. Huynh, F.E. Soetaredjo, S. Ismadji, Y.-H. Ju, J. Food Drug Anal. 22, 296–302 (2014) https://doi.org/10.1016/j.jfda.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  27. M.-E. Cuvelier, H. Richard, C. Berset,Bioscience, biotechnology, and biochemistry,56(1992)324–325 https://doi.org/10.1016/S0023-6438(95)80008-5

  28. M.-N. Maillard, M.-H. Soum, P. Boivin, C. Berset, LWT-Food Sci. Technol. 29, 238–244 (1996) https://doi.org/10.1006/fstl.1996.0035

    Article  CAS  Google Scholar 

  29. J.A. Pereira, I. Oliveira, A. Sousa, P. Valentão, P.B. Andrade, I.C. Ferreira, F. Ferreres, A. Bento, R. Seabra, L. Estevinho, Food Chem. Toxicol. 45, 2287–2295 (2007) https://doi.org/10.1016/j.fct.2007.06.004

    Article  CAS  PubMed  Google Scholar 

  30. H. Li, X. Wang, Y. Li, P. Li, H. Wang, Food Chem. 112, 454–460 (2009) https://doi.org/10.1016/j.foodchem.2008.05.111

    Article  CAS  Google Scholar 

  31. M. Kornsteiner, K.-H. Wagner, I. Elmadfa, Food Chem. 98, 381–387 (2006) https://doi.org/10.1016/j.foodchem.2005.07.033

    Article  CAS  Google Scholar 

  32. G. Jayaprakasha, B. Girennavar, B.S. Patil, Bioresource Technol. 99, 4484–4494 (2008) https://doi.org/10.1016/j.biortech.2007.07.067

    Article  CAS  Google Scholar 

  33. R. Martínez, P. Torres, M.A. Meneses, J.G. Figueroa, J.A. Pérez-Álvarez, M. Viuda-Martos, Food Chem., 135 (2012) 1520–1526 https://doi.org/10.1016/j.foodchem.2012.05.057

    Article  CAS  PubMed  Google Scholar 

  34. C.-H. Jung, H.-M. Seog, I.-W. Choi, M.-W. Park, H.-Y. Cho, LWT-Food Sci. Technol. 39, 266–274 (2006) https://doi.org/10.1016/j.lwt.2005.01.004

    Article  CAS  Google Scholar 

  35. J.C. Barreira, I.C. Ferreira, M.B.P. Oliveira, J.A. Pereira, Food Chem. 107, 1106–1113 (2008) https://doi.org/10.1016/j.foodchem.2007.09.030

    Article  CAS  Google Scholar 

  36. E. Niki, Y. Yoshida, Y. Saito, N. Noguchi, Biochemical biophysical res. communications 338, 668–676 (2005) https://doi.org/10.1016/j.bbrc.2005.08.072

    Article  CAS  Google Scholar 

  37. R. Shaddel, A. Maskooki, M.H. Haddad-Khodaparast, S. Azadmard-Damirchi, M. Mohamadi, B. Fathi-Achachlouei, Food Sci. Biotechnol. 23, 1459–1468 (2014)

    Article  CAS  Google Scholar 

  38. S. Vekiari, V. Oreopoulou, C. Tzia, C. Thomopoulos, J. Am. Oil Chemi. Soc. 70, 483–487 (1993)

    Article  CAS  Google Scholar 

  39. J.-P. Rauha, S. Remes, M. Heinonen, A. Hopia, M. Kähkönen, T. Kujala, K. Pihlaja, H. Vuorela, P. Vuorela, Int. J. Food Microb. 56, 3–12 (2000) https://doi.org/10.1016/S0168-1605(00)00218-X

    Article  CAS  Google Scholar 

  40. K. Shetty, M. Wahlqvist,Asia Pac. J. Clin. Nutr.,13(2004)

  41. G.J. Tortora, B.R. Funke, C.L. Case, T.R. Johnson,Microbiology:an introduction,Benjamin Cummings San Francisco, 2004

  42. G. Onivogui, M. Diaby, X. Chen, H. Zhang, Y. Song, J. ethnopharmacol. 168, 287–290 (2015) https://doi.org/10.1016/j.jep.2015.03.055

    Article  CAS  PubMed  Google Scholar 

  43. P.G. Jamkhande, A.S. Wattamwar, A.D. Kankudte, P.S. Tidke, M.G. Kalaskar, Alexandria J. Medic. 52, 19–25 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Salarbashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimkhani, M.M., Salarbashi, D., Sanjari Sefidy, S. et al. Effect of extraction solvents on lipid peroxidation, antioxidant, antibacterial and antifungal activities of Berberis orthobotrys Bienerat ex C.K. Schneider. Food Measure 13, 357–367 (2019). https://doi.org/10.1007/s11694-018-9951-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-9951-9

Keywords

Navigation