Skip to main content
Log in

Discrimination of organic and conventional rice by chemometric analysis of NIR spectra: a pilot study

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

A pilot study was conducted to develop nondestructive calibration models to discriminate organic and conventional rice from selected field trials in Heilongjiang Province, China using near-infrared (NIR) spectroscopy with the absorption mode in the wave number range of 12000–4000 cm−1. Multivariate methods such as principal component analysis (PCA) and partial least squares (PLS) regression were used to interpret the NIR spectral data. PLS regression was used for discrimination between organic and conventional rice samples after several pretreatments of the spectra. The coefficient of determination (R2) value for the PLS regression model was 0.8430 with a standard error for cross validation (SECV) of 0.1992 and a root mean square error for cross validation (RMSECV) of 0.1982. Overall, the results indicated good performance of the prediction models and supported the capability of NIR spectroscopy to classify between discriminate organic and conventional rice. This study further supports the utilization of NIR in the discriminative analysis of foods and as a noteworthy method for the authentication of organic rice at the industrial level.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Matsumura et al., Mapping the global supply and demand structure of rice. Sustain. Sci. 4(2), 301–313 (2009)

    Article  Google Scholar 

  2. M. Huber et al., Organic food and impact on human health: assessing the status quo and prospects of research. NJAS - Wageningen J. Life Sci. 58(3), 103–109 (2011)

    Article  Google Scholar 

  3. Guidelines for the production, processing, labelling andmarketing of organically produced foods., C.A. Commission and FAO, Editors. 1999: 1999

  4. V. Worthington, Nutritional quality of organic versus conventional fruits, vegetables, and grains. J. Altern. Complement. Med. 7(2), 161–173 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. P. Flores et al., Classification of organic and conventional sweet peppers and lettuce using a combination of isotopic and bio-markers with multivariate analysis. J. Food Compos. Anal. 31(2), 217–225 (2013)

    Article  CAS  Google Scholar 

  6. F.J. Cuevas et al., Effect of management (organic vs conventional) on volatile profiles of six plum cultivars (Prunus salicina Lindl.). A chemometric approach for varietal classification and determination of potential markers. Food Chem. 199, 479–484 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. Y. Suzuki et al., Multiple stable isotope analyses for verifying geographical origin and agricultural practice of japanese rice samples. Bunseki Kagaku 58(58), 1053–1058 (2009)

    Article  CAS  Google Scholar 

  8. S.D. Kelly, A.S. Bateman, Comparison of mineral concentrations in commercially grown organic and conventional crops—Tomatoes (Lycopersicon esculentum) and lettuces (Lactuca sativa). Food Chem. 119(2), 738–745 (2010)

    Article  CAS  Google Scholar 

  9. P. Mäder et al., Wheat quality in organic and conventional farming: results of a 21 year field experiment. J. Sci. Food Agric. 87(10), 1826–1835 (2007)

    Article  CAS  Google Scholar 

  10. A. Vlachos, I.S. Arvanitoyannis, A review of rice authenticity/adulteration methods and results. Crit. Rev. Food Sci. Nutr. 48(6), 553–598 (2008)

    Article  PubMed  Google Scholar 

  11. E.M. Borges et al., Monitoring the authenticity of organic rice via chemometric analysis of elemental data. Food Res. Int. 77, 299–309 (2015)

    Article  CAS  Google Scholar 

  12. A.M.C. Davies, William Herschel and the discovery of near infrared. J. Near Infrared Spectrosc. 11(1), 3–5 (2000)

    Article  Google Scholar 

  13. K.H. Norris, Design and development of a new moisture meter. Agric. Eng. 45, 370 (1964)

    Google Scholar 

  14. L. Salguero-Chaparro et al., Feasibility of using NIR spectroscopy to detect herbicide residues in intact olives. Food Control 30(2), 504–509 (2013)

    Article  CAS  Google Scholar 

  15. M.V. Reboucas et al., Near-infrared spectroscopic prediction of chemical composition of a series of petrochemical process streams for aromatics production. Vib. Spectrosc. 52(1), 97–102 (2010)

    Article  CAS  Google Scholar 

  16. J. Luypaert, D.L. Massart, Y. Vander, Heyden, Near-infrared spectroscopy applications in pharmaceutical analysis. Talanta 72(3), 865–883 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. Q. Chen, J. Zhao, H. Lin, Study on discrimination of roast green tea (Camellia sinensis L.) according to geographical origin by FT-NIR spectroscopy and supervised pattern recognition. Spectrochim Acta A Mol Biomol. Spectrosc. 72(4), 845–850 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. Y. Ni, M. Mei, S. Kokot, Analysis of complex, processed substances with the use of NIR spectroscopy and chemometrics: classification and prediction of properties—the potato crisps example. Chemometr. Intell. Lab. Syst. 105(2), 147–156 (2011)

    Article  CAS  Google Scholar 

  19. P.D. Alamar et al., Quality evaluation of frozen guava and yellow passion fruit pulps by NIR spectroscopy and chemometrics. Food Res. Int. 85, 209–214 (2016)

    Article  CAS  PubMed  Google Scholar 

  20. S. Munera et al., Non-destructive assessment of the internal quality of intact persimmon using colour and VIS/NIR hyperspectral imaging. LWT—Food Sci. Technol. 77, 241–248 (2017)

    Article  CAS  Google Scholar 

  21. X. Li, Y. He, C. Wu, Non-destructive discrimination of paddy seeds of different storage age based on Vis/NIR spectroscopy. J. Stored Prod. Res. 44(3), 264–268 (2008)

    Article  Google Scholar 

  22. A. Heman, C.L. Hsieh, Measurement of moisture content for rough rice by visible and near-infrared (NIR) spectroscopy. Eng. Agric. Environ. Food 9(3), 280–290 (2016)

    Article  Google Scholar 

  23. L.H. Xie et al., Optimisation of near-infrared reflectance model in measuring protein and amylose content of rice flour. Food Chem. 142(2), 92–100 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. R.R. Gangidi, A. Proctor, J.-F. Meullenet, Milled rice surface lipid measurement by diffuse reflectance fourier transform infrared spectroscopy (DRIFTS). J. Am. Oil Chem. Soc. 79(1), 7–12 (2002)

    Article  CAS  Google Scholar 

  25. V. Loewe et al., Discriminant analysis of Mediterranean pine nuts (Pinus pinea L.) from Chilean plantations by near infrared spectroscopy (NIRS). Food Control, 73, 634–643 (2016)

    Article  Google Scholar 

  26. H. Ayvaz et al., The use of infrared spectrometers to predict quality parameters of cornmeal (corn grits) and differentiate between organic and conventional practices. J. Cereal Sci. 62, 22–30 (2015)

    Article  CAS  Google Scholar 

  27. S. Serranti et al., Classification of oat and groat kernels using NIR hyperspectral imaging. Talanta 103, 276–284 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. E.T. Champagne et al., Correlation between cooked rice texture and rapid visco analyser measurements. Cereal Chem. 76(5), 764–771 (1999)

    Article  CAS  Google Scholar 

  29. S. Wold, Principle componant analysis. Chemom. Intell. Lab. Syst. 2, 37–52 (1987)

    Article  CAS  Google Scholar 

  30. S. Roussel et al., Authenticating white grape must variety with classification models based on aroma sensors, FT-IR and UV spectrometry. J. Food Eng. 60(4), 407–419 (2003)

    Article  Google Scholar 

  31. B.M. Nicolaï et al., Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biol. Technol. 46(2), 99–118 (2007)

    Article  Google Scholar 

  32. M. Plans, J. SimÓ, F. Casañas, et al., Characterization of common beans (Phaseolus vulgaris L.) by infrared spectroscopy: comparison of MIR, FT-NIR and dispersive NIR using portable and benchtop instruments. Food Res. Int. 54(2), 1643–1651 (2013)

    Article  CAS  Google Scholar 

  33. L.M. Dale et al., Discrimination of grassland species and their classification in botanical families by laboratory scale NIR hyperspectral imaging: preliminary results. Talanta 116, 149–154 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. P. Geladi, E. Dåbakk, An overview of chemometrics applications in near infrared spectrometry. J. Near Infrared Spectrosc. 3(1), 119 (1995)

    Article  CAS  Google Scholar 

  35. Y. Chen et al., Discrimination of Ganoderma lucidum according to geographical origin with near infrared diffuse reflectance spectroscopy and pattern recognition techniques. Anal. Chim. Acta 618(2), 121–130 (2008)

    Article  CAS  PubMed  Google Scholar 

  36. L. Moseholm, Analysis of air pollution plant exposure data: the soft independent modelling of class analogy (SIMCA) and partial least squares modelling with latent variable (PLS) approaches. Environ. Pollut. 53(1–4), 313 (1988)

    Article  CAS  PubMed  Google Scholar 

  37. R.G. Brereton, Introduction to multivariate calibration in analytical chemistry. Analyst 125(11), 2125–2154 (2000)

    Article  CAS  Google Scholar 

  38. P.F. Velleman, R.E. Welsch, Efficient computing of regression diagnostics. Am. Stat. 35(4), 234–242 (1981)

    Google Scholar 

  39. W. Saeys, A.M. Mouazen, H. Ramon, Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy. Biosys. Eng. 91(4), 393–402 (2005)

    Article  Google Scholar 

  40. H. Jiang et al., Identification of solid state fermentation degree with FT-NIR spectroscopy: comparison of wavelength variable selection methods of CARS and SCARS. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 149, 1–7 (2015)

    Article  CAS  Google Scholar 

  41. S.L. Cantor et al., NIR Spectroscopy applications in the development of a compacted multiparticulate system for modified release. AAPS PharmSciTech 12(1), 262–278 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. F. Westad, F. Marini, Validation of chemometric models—a tutorial. Anal. Chim. Acta 893, 14 (2015)

    Article  CAS  PubMed  Google Scholar 

  43. D. Kusumaningrum et al., Nondestructive technique for determining the viability of soybean (glycine max) seeds using FT-NIR spectroscopy. J. Sci. Food Agric. 98(5), 1734–1742 (2018)

    Article  CAS  PubMed  Google Scholar 

  44. G. Downey, J.D. Kelly, Detection and quantification of apple adulteration in strawberry and raspberry purees using visible and near infrared spectroscopy. J. Agric. Food Chem. 52, 204–209 (2004)

    Article  CAS  Google Scholar 

  45. S.R. Delwiche et al., Apparent amylose content of milled rice by near-infrared reflectance spectrophotometry. Cereal Chem. 72(2), 182–187 (1995)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by the Research & Development Projects of Heilongjiang Province (Project GA14B104). We would also like to thank the Heilongjiang Academy of Agricultural Sciences for providing rice grain information and McGill University and Northeast Agricultural University for scientific support and technical advice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Ma or Michael O. Ngadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, R., Liu, L., Zhang, D. et al. Discrimination of organic and conventional rice by chemometric analysis of NIR spectra: a pilot study. Food Measure 13, 238–249 (2019). https://doi.org/10.1007/s11694-018-9937-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-9937-7

Keywords

Navigation