Skip to main content
Log in

Interactions between four common plant-derived phenolic acids and pectin, and its effect on antioxidant capacity

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Phenolic acids (PAs) are molecules of vegetable origin with high antioxidant capacity (AOXC) attributed to their hydroxyl groups. Vegetable cells store PAs within vacuoles, and when disrupted through mastication or food processing, PAs can interact with other molecules like fibers, which alters their AOXC. Mango (Mangifera indica L.) cv Ataulfo contains PAs and fiber, particularly pectin. Previous reports indicate that PAs interact between themselves and affect each other’s AOXC. The present work analyzed the interactions between the main PAs from mango cv Ataulfo and pectin, and how pectin affects their AOXC. We used UV–Vis spectrophotometry, fluorescence spectrophotometry and AOXC assays to study how pectin influences gallic, protocatechuic, chlorogenic and vanillic acid, individually, and in combinations of two, three and four PAs. Results showed that gallic acid was the most affected by the presence of pectin, which was related to its number and position of hydroxyl groups. The effect of pectin was not as obvious when three or four PAs were combined, suggesting that PAs preferentially interact among themselves, likely through hydrogen bonds. Pectin exerted mostly synergistic effects on AOXC values when added to one, two and four combined PAs; antagonistic effects were recorded when pectin was added to three combined PAs. The effect of pectin on AOXC was more noticeable when analyzed by the ORAC assay, and less when analyzed by the DPPH assay. Basic knowledge of the interactions between PAs and pectin is of great importance, since they are normally consumed alongside each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.D. Noratto, M.C. Bertoldi, K. Krenek, S.T. Talcott, P.C. Stringheta, S.U. Mertens-Talcott, J. Agric. Food Chem. 58(7), 4104–4112 (2010)

    Article  CAS  Google Scholar 

  2. H. Palafox-Carlos, E.M. Yahia, G.A. Gonzalez-Aguilar, Food Chem. 135(1), 105–111 (2012)

    Article  CAS  Google Scholar 

  3. H. Palafox-Carlos, J. Gil-Chavez, R.R. Sotelo-Mundo, J. Namiesnik, S. Gorinstein, G.A. Gonzalez-Aguilar, Molecules 17(11), 12657–12664 (2012)

    Article  CAS  Google Scholar 

  4. N.J. Salazar-López, G.A. Gonzalez-Aguilar, G. Loarca-Piña, F.J.C. Moroyoqui, O.R. Sández, J.A. Domínguez Avila, M. Robles-Sanchez, Oxid. Med. Cell. Longev. 2017, 8219023 (2017). https://doi.org/10.1155/2017/8219023

  5. A. Padayachee, G. Netzel, M. Netzel, L. Day, D. Zabaras, D. Mikkelsen, M.J. Gidley, Food Chem. 135(4), 2287–2292 (2012)

    Article  CAS  Google Scholar 

  6. G.R.M.M. Arts, J.T.J.,, H.P. Haenen, A. Voss, Bast, Food Chem. Toxicol. 39(8), 787–791 (2001)

    Article  Google Scholar 

  7. C.M. Ajila, U.J.S.P. Rao, J. Funct. Foods 5(1), 444–450 (2013)

    Article  CAS  Google Scholar 

  8. R. Apak, M. Ozyurek, K. Guclu, E. Capanoglu, J Agric. Food Chem. 64(5), 1028–1045 (2016)

    Article  CAS  Google Scholar 

  9. F. Iagher, F. Reicher, J.L. Ganter, Int. J. Biol. Macromol. 31(1–3), 9–17 (2002)

    Article  CAS  Google Scholar 

  10. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn (Springer, New York, 2006), xxvi, p. 954

  11. A. Davalos, C. Gomez-Cordoves, B. Bartolome, J. Agric. Food Chem. 52(1), 48–54 (2004)

    Article  CAS  Google Scholar 

  12. I.F.F. Benzie, J.J. Strain, Anal Biochem. 239(1), 70–76 (1996)

    Article  CAS  Google Scholar 

  13. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radical Biol. Med. 26(9–10), 1231–1237 (1999)

    Article  CAS  Google Scholar 

  14. W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT Food Sci. Technol. 28(1), 25–30 (1995)

    Article  CAS  Google Scholar 

  15. Cheminformatics. Molinspiration. 2016; http://www.molinspiration.com

  16. M. Pinelo, A. Arnous, A.S. Meyer, Trends Food Sci. Technol. 17(11), 579–590 (2006)

    Article  CAS  Google Scholar 

  17. M. Skrt, E. Benedik, C. Podlipnik, N.P. Ulrih, Food Chem. 135(4), 2418–2424 (2012)

    Article  CAS  Google Scholar 

  18. L.M. López-Martínez, H. Santacruz-Ortega, R.-E. Navarro, R.R. Sotelo-Mundo, G.A. González-Aguilar, PLoS ONE 10(11), 1–11 (2015)

    Article  Google Scholar 

  19. J. Perez-Jimenez, F. Saura-Calixto, Food Res. Int. 39(7), 791–800 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Council for Science and Technology (CONACYT, Mexico City, Mexico) for financial support. This work is part of Fronteras de la Ciencia: “Un enfoque multidisciplinario de la farmacocinética de polifenoles de mango Ataulfo: interacciones moleculares, estudios preclínicos y clínicos”, Project Number 563.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo A. González Aguilar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domínguez Avila, J.A., Villegas Ochoa, M.A., Alvarez Parrilla, E. et al. Interactions between four common plant-derived phenolic acids and pectin, and its effect on antioxidant capacity. Food Measure 12, 992–1004 (2018). https://doi.org/10.1007/s11694-017-9714-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9714-z

Keywords

Navigation