Identification and quantification of phenolic compounds through reversed phase HPLC-DAD method in sunflower seeds under various treatments of potassium nitrate, zinc sulphate and gibberellic acid

  • Amin Ullah Jan
  • Fazal Hadi
  • Alam Zeb
  • Ziaul Islam
Original Paper


Phenolic compounds were extracted from seeds of eight varieties i.e. Rising Sun, SMH-0907, Ausigold-7, SMH-0939, US-444, Hysun-33, SMH-0917 and HS-K6 of sunflower and characterized by HPLC-DAD method. Quantification of individual compounds was carried out by external calibration. Total of 15 phenolic compound were identified, namely hydroxybenzoic acid, hydroxybenzoyl glucose, caftaric acid, rosmanol, gallic acid derivative, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, caffeic acid, pro-anthocynidin B1, rosmannic acid, sinapic acid derivative, caffeic acid derivative 1, caffeic acid derivative 2, caffeoylmalic acid derivative and quercetin derivative in the seeds of sunflower. Different treatments of potassium nitrate, zinc sulphate, and gibberellic acid showed significant effect on the biosynthesis of phenolic compound as compared to control plants. Among the 15 compounds analyzed 3,4-di-O-caffeoylquinic acid was predominant compound in the seeds. The current results demonstrate that this method can be efficiently used for the identification and quantification of phenolic compound in sunflower seeds.


Sunflower Potassium Zinc GA3 Phenolic compounds 



We would like to acknowledge National Agriculture Research Centre (NARC) of Pakistan and grateful to Mr Amir Zia Scientific Officer in NARC who provided the seeds of sunflower varieties for this study.


  1. 1.
    W. Wink, Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochem 64, 3–19 (2003)CrossRefGoogle Scholar
  2. 2.
    A. Zeb, A reversed phase HPLC-DAD method for the determination of phenolic compounds in plant leaves. Anal. Methods 7, 7753–7757 (2015)CrossRefGoogle Scholar
  3. 3.
    V. Lattanzio, P.A. Kroon, S. Quideau, D. Treutter, Plant phenolics secondary metabolites with diverse functions, vol. 1 (Blackwell Publishing, Hoboken, 2008) pp. 1–35 ()Google Scholar
  4. 4.
    A.J. Stangelo, Lipid oxidation in foods. Crit. Rev. Food Sci. Nutr. 36, 175–224 (1996)CrossRefGoogle Scholar
  5. 5.
    N.J. Temple, Antioxidants and disease: more questions than answers. Nutr. Res. 20, 449–459 (2000)CrossRefGoogle Scholar
  6. 6.
    B.L. Halvorsen, K. Holte, M.C.W. Myhrstad, I. Barikmo, E. Hvattum, S.F. Remberg, A.B. Wold, K. Haffner, H. Baugerod, L.F. Andersen, J.O. Moskaug, D.R. Jacobs, R. Blomhoff, A systematic screening of total antioxidants in dietary plants. J. Nutr. 132, 461–471 (2002)CrossRefGoogle Scholar
  7. 7.
    S. Schmidt, J. Pokorny, Potential application of oilseeds as source of antioxidants for food. Czech J. Food Sci. 23, 93–102 (2005)CrossRefGoogle Scholar
  8. 8.
    P.J. Caceres, C. Martınez-Villaluenga, L. Amigo, J. Frias, Food Chem. 152, 407–414 (2014)CrossRefGoogle Scholar
  9. 9.
    A. Khoddami, M. Wilkes, T. Roberts, Techniques for analysis of plant phenolic compounds. Molecule 18, 2328–2375 (2013)CrossRefGoogle Scholar
  10. 10.
    F.A. Tomas-Barberan, M.I. Gil, P. Cremin, A.L. Waterhouse, B. Hess-Pierce, A.A. Kader, J. Agric. Food Chem. 49, 4748–4760 (2001)CrossRefGoogle Scholar
  11. 11.
    F.M. Pirisi, P. Cabras, C.F. Cao, M. Migliorini, M. Muggelli, J. Agric. Food. 48, 1191–1196 (2000)CrossRefGoogle Scholar
  12. 12.
    J. Santos, M.B. Oliveira, E. Ibanez, M. Herrero, J. Chromatogr. 1327, 118–131 (2014)CrossRefGoogle Scholar
  13. 13.
    P.F. Leal, N.B. Maia, Q.A.C. Caemello, P.R. Catharino, M.N. Eberlin, M.A. Meireles, Sweet basil extracts obtained by supercritical fluid extraction (SFE): global yields, chemical composition, antioxidant activity and estimation of the cost of manufacturing. Food Biopros. Technol. 1, 326–338 (2008)CrossRefGoogle Scholar
  14. 14.
    G.D. Lecce, S. Arranz, O. Jauregui, A. Tresserra-Rimbau, P. Quifer-Rada, R.M. Lamuela-Ravent, Food Chem. 145, 874–882 (2014)CrossRefGoogle Scholar
  15. 15.
    S.E. George, K. Ramalakshmi, L.J. Mohan-Rao, Crit. Rev. Food Sci. Nutr. 48, 464–469 (2008)CrossRefGoogle Scholar
  16. 16.
    C. Jayasinghe, N. Gotoh, T. Aoki, S. Wada, Phenolics comparison and antioxidant activity of sweet basil. J. Agric. Food Chem. 51, 4442–4449 (2003)CrossRefGoogle Scholar
  17. 17.
    P.M. Nguyen, E.M. Kwee, E.D. Niemeyer, Potassium rate alters the antioxidant capacity and phenolic concentration of basil leaves. Food Chem. 123(4), 1235–1241 (2010)CrossRefGoogle Scholar
  18. 18.
    I. Fecka, S. Turek, Determination of polyphenolic compounds in commercial herbal drugs and spices from Lamiaceae: thyme, wild thyme and sweet marjoram by chromatographic techniques. Food Chem. 108, 1039–1053 (2008)CrossRefGoogle Scholar
  19. 19.
    R.J. Grayer, G.C. Kite, N.C. Veitch, M.R. Eckert, P.D. Marin, P. Senanayake, Leaf flavonoid glycosides as chemosystematic characters in Ocimum. Biochem. Syst. Ecol. 30, 327–342 (2002)CrossRefGoogle Scholar
  20. 20.
    M. Norhaiza, M. Maziah, M. Hakiman, Antioxidative properties of leaf extracts of popular Malaysian herb, Labisia pumila. J. Med. Plant Res. 3, 217–223 (2009)Google Scholar
  21. 21.
    A. Ghasemzadeh, H.Z.E. Jaafar, Effect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger. Int. J. Mol. Sci. 12, 1101–1114 (2011)CrossRefGoogle Scholar
  22. 22.
    A. Ghasemzadeh, H.Z.A. Jaafar, A. Rahmat, P.E.M. Wahab, M.R.A. Halim, Effect of different light intensities on total phenolic and flavonoids synthesis and anti-oxidant activities in young ginger varieties. Int. J. Mol. Sci 11, 3885–3897 (2010)CrossRefGoogle Scholar
  23. 23.
    H.L. Wei, E. Tye, D.F. Bresnick, Birt, Inhibitory effect of epigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice. Cancer Res. 50, 499–502 (1990)Google Scholar
  24. 24.
    M.H. Ibrahim, H.Z.A. Jaafar, E. Karimi, A. Ghasemzadeh, Primary, secondary metabolites, photosynthetic capacity and antioxidant activity of the Malaysian Herb Kacip Fatimah exposed to potassium fertilization under greenhouse conditions. Int. J. Mol. Sci. 13, 15321–15342 (2012)CrossRefGoogle Scholar
  25. 25.
    U. Krämer, S. Clemens, Functions and Homeostasis of Zinc, Copper, and Nickel in Plants. in Molecular Biology of Metal Homeostasis and Detoxification ed. by M.J. Tamás, E. Martinoia, (Springer, Berlin, 2006) pp. 215–271Google Scholar
  26. 26.
    S. Saadati, N. Moallemi, S.M.H. Mortazavi, S.M. Seyyed, Effects of zinc and boron foliar application on soluble carbohydrate and oil contents of three olive cultivars during fruit ripening. Sci. Hortic. 164, 30–34 (2013)CrossRefGoogle Scholar
  27. 27.
    C. Song, M. Liu, J. Meng, M. Chi, Z. Xi, Z. Zhang, Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv. merlot growing on zinc deficient soil. Molecules 20, 2536–2554 (2015)CrossRefGoogle Scholar
  28. 28.
    H. Zhao, C.C. Li, J. Pardo, P.C. Chu, C.X. Liao, J. Huang, J.G. Dong, X. Zhou, A novel E3 ubiquitin ligase TRAC-1 positively regulates T cell activation. J. Immun. 174(9), 5288–5297 (2005)CrossRefGoogle Scholar
  29. 29.
    Z. Liang, M. Yini, X. Tao, C. Beimi, L. Yan, G. Zhixin, Y. Dongfeng, Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots. PLoS ONE 8(9), 72806–72812 (2013)CrossRefGoogle Scholar
  30. 30.
    G.M. Weisz, D.R. Kammerer, R. Carle, Identification and quantification of phenolic compounds from sunflower (Helianthus annuus L.) kernels and shells by HPLC-DAD/ESI-MSn. Food Chem. 115, 758–765 (2009)Google Scholar
  31. 31.
    F.A. Tomás-Barberán, J.C. Espín, Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food and Agric. 81, 853–876 (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Amin Ullah Jan
    • 1
    • 2
  • Fazal Hadi
    • 1
  • Alam Zeb
    • 1
  • Ziaul Islam
    • 3
  1. 1.Department of Biotechnology, Faculty of Biological SciencesUniversity of MalakandChakdaraPakistan
  2. 2.Department of Biotechnology, Faculty of SciencesShaheed Benazir Bhutto University SheringalDir UpperPakistan
  3. 3.Department of Animal Sciences, Faculty of SciencesShaheed Benazir Bhutto University SheringalDir UpperPakistan

Personalised recommendations