Skip to main content
Log in

Characterization of agro-industrial byproducts and wastes for sustainable industrial application

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The present study aimed to characterize the agro-industrial by-products and wastes in terms of physical, functional, rheological, thermal, frictional and aerodynamic properties. It was observed that highest fat content (1.44%) was observed in potato peel powder (PPP) with largest median particle diameter (330.353 μm), water binding capacity (4.18 g/g) and swelling power (13.63%). Deoiled rice bran (DRB) had highest loose (4.33 g/ml) and tapped (4.65 g/ml) bulk density as well as (13.66%) protein content. Banana peel powder contained the highest amount of fiber (29.53%). All the raw materials (DRB, PDH and PPP) were free flowing in nature. However, banana peel powder (BPP) showed difficult flowing nature and had higher cohesion index (12.29) and caking strength. Thermo-gravimetric analysis revealed that highest residual mass was observed in paddy husk (PDH) (87.73%) and the lowest was found for BPP (42.29%). Aerodynamic properties revealed that DRB was heavier to lift than that of other powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Rouilly, L. Rigal, Agro-materials: a bibliographic review. J. Macromol. Sci. Part C 42(4), 441–479 (2002)

    Article  Google Scholar 

  2. F. Federici, F. Fava, N. Kalogerakis, D. Mantzavinosc, Valorisation of agro-industrial by-products, effluents and waste: concept, opportunities and the case of olive mill wastewaters. J. Chem. Technol. Biotechnol. 84, 895–900 (2009)

    Article  CAS  Google Scholar 

  3. E. Riggi, G. Avola, Quantification of the waste stream from fresh tomato packinghouses and its fluctuations: implications for waste management planning. Resour. Conserv. Recycl. 54, 436–41 (2010)

    Article  Google Scholar 

  4. J.S. Hamada, Characterization and functional properties of rice bran protein modified by commercial exoproteases and endoproteases. J. Food Sci. 65(2), 305–310 (2000)

    Article  CAS  Google Scholar 

  5. K. Jan, C.S. Riar, D.C. Saxena, Engineering and functional properties of biodegradable pellets developed from various agro-industrial wastes using extrusion technology. J. Food Sci. Technol. 52(12), 7625–7639 (2015)

    Article  CAS  Google Scholar 

  6. FAO, FAOSTAT agricultural data. food and agricultural commodities production (2014), http://faostat.fao.org/site/339/

  7. P. Zhongli, A. Cathcart, D. Wang, Thermal and chemical treatments to improve adhesive property of rice bran. Ind. Crop Prod. 22, 233–240 (2005).

    Article  Google Scholar 

  8. S. Nizamuddin, A. Sridevi, G. Narasimha, Production of β-galactosidase by Aspergillus oryzae in solid-state fermentation. Afr. J. Biotechnol. 7(8), 1096–1100 (2008)

    CAS  Google Scholar 

  9. S. Sunphorka, C. Warinthorn, O. Yoshito, N. Somkiat, Protein and sugar extraction from rice bran and de-oiled rice bran using subcritical water in a semi-continuous reactor: optimization by response surface methodology. Int. J. Food Eng. 8(3), 1–22 (2012)

    Article  Google Scholar 

  10. H.S. Yang, H.J. Kim, H.J. Park, B.J. Lee, H.T.S. Wang, Effect of compatibilizing agents on rice–husk flour reinforced polypropylene composites. Compos. Struct. 77(1), 45–55 (2007)

    Article  Google Scholar 

  11. G.E. Marlina, B. Wirjosentono, N. Bukit, H. Agusnar, Preparation and characterization of rice husk ash as filler material in to nanoparticles on Hdpe thermoplastic composites. Chem. Mater. Res. 6(7), 14–24 (2014).

    Google Scholar 

  12. M. Simone, R. Leal, F.S. Evelise, A.F. Carlos, M.B.N Sonia, Studies on the properties of rice-husk-filled-PP composites—effect of maleated PP. Mater. Res. 12(3), 333–338 (2009)

    Article  Google Scholar 

  13. B.S. Ndazi S. Karlsson., J.V. Tesha, C.W. Nyahumwa, Chemical and physical modifications of rice husks for use as composite panels. Composites 38, 925–935 (2007)

    Article  Google Scholar 

  14. P. Sharma, A.A. Mishra, Biofuel production from banana peel by using micro wave. Int. J. Sci. Eng. Technol 3(4), 1015–1018 (2015)

    Google Scholar 

  15. N. Lokeswari, Statistical optimization of experimental variables associated with production of alpha amylases by bacillus subtilis using banana agroresidual wastes in solid-state fermentation. Rasayan J. Chem. 3(1), 172–178 (2010)

    CAS  Google Scholar 

  16. J. Shobhana, C. Dhanashree, R. Shirish, Lipase production from banana peel extract and potato peel extract. Int. J. Res. Pure Appl. Microbiol. 3(1), 11–13 (2013)

    Google Scholar 

  17. T.H. Emaga, R.H. Andrianaivo, B. Wathelet, J.T. Tchango, M. Paquot, Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem. 103, 590–600 (2007)

    Article  Google Scholar 

  18. H.K. Tewari, S.S. Marwaha, K. Rupal, Ethanol from banana peels. Agric. wastes 16(2), 135–146 (1986)

    Article  CAS  Google Scholar 

  19. N. Bardiya, D. Somayaji, S. Khanna, Biomethanation of banana peel and pineapple waste. Bioresour. Technol. 58(1), 73–76 (1996)

    Article  CAS  Google Scholar 

  20. C.F.I. Onwuka, P.O. Adetiloye, C.A. Afolami, Use of household wastes and crop residues in small ruminant feeding in Nigeria. Small Rumin. Res. 24(3), 233–237 (1997)

    Article  Google Scholar 

  21. G. Annadurai, R.S. Juang, D.J. Lee, Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. 92(3), 263–274 (2002)

    Article  CAS  Google Scholar 

  22. I. Mushimiyimana, P. Tallapragada, Agro wastes residues as strategy to produce cellulase. Int. J. ChemTech Res. 8(1), 89–97 (2015)

    CAS  Google Scholar 

  23. K.C. Chang, Polyphenol antioxidants from potato peels: extraction optimization and application to stabilizing lipid oxidation in foods. Polyphenol antioxidants from potato peels: extraction optimization and application to stabilizing lipid oxidation in foods. 1–8 (2011)

  24. D. Arapoglou, T. Varzakas, A. Vlyssides, C. Israilides, Ethanol production from potato peel waste (PPW). Waste Manag. 30, 1898–1902 (2010)

    Article  CAS  Google Scholar 

  25. D. Wu, Recycle technology for potato peel waste processing: a review. Proced. Environ. Sci. 31, 103–107 (2016)

    Article  Google Scholar 

  26. S. Liang, A.G. McDonald, Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production. J. Agric. Food Chem. 62(33), 8421–8429 (2014)

    Article  CAS  Google Scholar 

  27. AOAC, in Approved methods of analysis. (The Association of Official Analytical Chemists, Washington DC, 2000)

    Google Scholar 

  28. R.A. Anderson, H.F. Conway, V.F. Pfeifer, E.L. Griffin, Gelatinization of corn grits by roll and extrusion cooking. Cereal Sci. Today 14, 4–12 (1969).

    Google Scholar 

  29. R.A. Garcia, R.A. Flores, C.E. Mazenko, Factors contributing to the poor bulk behavior of meat and bone meal and methods for improving these behaviours. Bioresour. Technol. 98(15), 2852–2858 (2007)

    Article  CAS  Google Scholar 

  30. Q. Wu, H. Sakabe, S. Isobe, Processing and properties of low cost corn gluten meal/wood fiber composite. Ind. Eng. Chem. Res. 42(26), 6765–6773 (2003)

    Article  CAS  Google Scholar 

  31. K. Bashir, M. Aggarwal, Effects of gamma irradiation on the physicochemical, thermal and functional properties of chickpea flour. LWT-Food Sci. Technol. 69, 614–622 (2016)

    Article  CAS  Google Scholar 

  32. E.C. Abdullah, A.M. Salam, A.R. Aziz, Cohesiveness and flowability properties of silica gel powder. Phys. Int. 1(1), 16–21 (2010)

    Article  CAS  Google Scholar 

  33. S. Gursoy, E. Guzel, Determination of physical properties of some agricultural grains. Res. J. Appl. Sci. Eng. Technol. 2(5), 492–498 (2010)

    Google Scholar 

  34. S. Sairam, A.G. Gopala Krishna, U. Asna, Physico-chemical characteristics of defatted rice bran and its utilization in a bakery product. J. Food Sci. Technol. 48(4), 478–483 (2011)

    Article  CAS  Google Scholar 

  35. C. Wang, X. Feng, L. Dan, Z. Min, Physico-chemical and structural properties of four rice bran protein fractions based on the multiple solvent extraction method. Czech J. Food Sci. 33(3), 283–291 (2015)

    Article  CAS  Google Scholar 

  36. T. Tanaka, M. Hoshina, S. Tanabe, K. Sakai, S. Ohtsubo, M. Taniguchi, Production of d-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour. Technol. 97(2), 211–217 (2006)

    Article  CAS  Google Scholar 

  37. T.A. Adeniji, L.O. Sanni, I.S. Barimalaa, A.D. Hart, Nutritional and anti-nutritional composition of flour made from plantain and banana hybrid pulp and peel mixture. Niger. Food J. 25(2), 68–76 (2007)

    CAS  Google Scholar 

  38. M.E. Camire, D. Violette, M.P. Dougherty, M.A. McLaughlin, Potato peel dietary fiber composition: effects of peeling and extrusion cooking processes. J. Agric. Food Chem 45, 1404–1408 (1997)

    Article  CAS  Google Scholar 

  39. S. Singh, A. NeeruBala, Verma S. Shipra, Development of noodle using banana peels as a functional ingredient. Int. J. Pure Appl. Biosci. 3(1), 87–91 (2015)

    Google Scholar 

  40. K. Jan, C.S. Riar, D.C. Saxena, Optimization of pellet production from agro-industrial by-products: effect of plasticizers on properties of pellets and composite pots. J. Polym. Environ. (2016). doi:10.1007/s10924-016-0786-3

    Google Scholar 

  41. C. Reh, S.N. Bhat, S. Berrut, Determination of water content in powdered milk. Food Chem. 86(3), 457–464 (2004)

    Article  CAS  Google Scholar 

  42. H.D. Isengard, Water content, one of the most important properties of food. Food control 12(7), 395–400 (2001)

    Article  Google Scholar 

  43. J.J. Fitzpatrick, T. Iqbal, C. Delaney, T. Twomey, M.K. Keogh, Effect of powder properties and storage conditions on the flowability of milk powders with different fat contents. J. Food Eng. 64(4), 435–444 (2004)

    Article  Google Scholar 

  44. C. Igathinathane, S.T. Jaya, S. Sokhansanj, X. Bi, C.J. Lim, S. Melin, E. Mohammad, Simple and inexpensive method of wood pellets macro-porosity measurement. Biores. Technol. 101(16), 6528–6537 (2010)

    Article  CAS  Google Scholar 

  45. A.R. Yadav, S. Mahadevamma, R.N. Tharanathan, R.S. Ramteke, Characteristics of acetylated and enzyme-modified potato and sweet potato flours. Food Chem 103(4), 1119–1126 (2007)

    Article  CAS  Google Scholar 

  46. M. Carcea, R. Acquistucci, Isolation and functional characterization of Fonio (Digitaria exillis Stapf.) starch. Starch/Starke 49, 131–135 (1997)

    Article  CAS  Google Scholar 

  47. A. Sangnark, A. Noomhorm, Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse. Food. Chem. 80, 221–229 (2003)

    Article  CAS  Google Scholar 

  48. A.D. Eric. V.V. Louis, J.C. Henrique, L.A. Ilse, J.E.M. Carvalho, Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48, 53–69 (2000)

    Article  Google Scholar 

  49. M. Seguchi, Oil-binding capacity of prime starch from chlorinated wheat flour. Cereal Chem. 61, 241–244 (1984)

    CAS  Google Scholar 

  50. S. Chandra, S. Samsher, Assessment of functional properties of different flours. Afr. J. Agric. Res. 8(38), 4849–4852 (2013)

    Google Scholar 

  51. G.K. Chandi, D.S. Sogi, Functional properties of rice bran protein concentrates. J. Food Eng 79(2), 592–597 (2007)

    Article  CAS  Google Scholar 

  52. M.A.F. B Thomas, P.A.F.B. Van der, Physical quality of pelleted animal feed 1. Criteria for pellet quality. Anim. Feed Sci. Technol. 61(1), 89–112 (1996)

    Article  Google Scholar 

  53. S. Mani, L.G. Tabil, S. Sokhansanj, Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy. 30(7), 648–654 (2006)

    Article  Google Scholar 

  54. A. Schussele, A. Bauer-Brandl, Note on the measurement of flowability according to the European pharmacopoeia. Int. J. Pharm. 257(1), 301–304 (2003)

    Article  CAS  Google Scholar 

  55. C.M. Alfred, C. L. Vincent. U.S. Patent No. 3,914,430. (U.S. Patent and Trademark Office, Washington, DC, 1975)

  56. E.C. Abdullah, D. Geldart, The use of bulk density measurements as flowability indicators. Powder Technol. 102, 151–165 (1999)

    Article  CAS  Google Scholar 

  57. R.B. Shah, M.A. Khan, M.A. Tawakkul, Comparative evaluation of flow for pharmaceutical powders and granules. Aaps Pharmscitech. 9, 250–258 (2008)

    Article  CAS  Google Scholar 

  58. V. Landillon, D. Cassan, M.H. Morel, B. Cuq, Flowability, cohesive and granulation properties of wheat powders. J. Food Eng. 86(2), 178–193 (2008)

    Article  Google Scholar 

  59. M. Benkovic, I. Bauman, Flow properties of commercial infant formula powders. World Acad. Sci. Eng. Technol. 54, 495–499 (2009)

    Google Scholar 

Download references

Acknowledgements

Financial support from Council of Scientific and Industrial Research (CSIR), New Delhi, Govt. of India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kulsum Jan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, K., Riar, C.S. & Saxena, D.C. Characterization of agro-industrial byproducts and wastes for sustainable industrial application. Food Measure 11, 1254–1265 (2017). https://doi.org/10.1007/s11694-017-9503-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9503-8

Keywords

Navigation