Skip to main content
Log in

Application of surface enhanced Raman spectroscopy for analyses of restricted sulfa drugs

  • Original Paper
  • Published:
Sensing and Instrumentation for Food Quality and Safety Aims and scope Submit manuscript

Abstract

The presence of sulfonamide residues in muscle foods is an important concern for consumers and regulatory agencies since these residues may pose potential health risks and result in an increase of drug-resistant bacteria. Surface enhanced Raman spectroscopy (SERS) was applied to analyze three sulfa drugs including sulfamerazine, sulfamethazine and sulfamethoxazole with concentrations ranging from 10 ng mL−1 to 5 μg mL−1. Partial least squares regression (PLS) and principal component analysis (PCA) were used for the spectral data analyses. The three sulfa drugs could be detected at concentration levels as low as 10 ng mL−1. For the quantitative analyses, the R 2 values of actual sulfa drug concentrations versus their concentrations predicted by the PLS models ranged from 0.8149 to 0.9009. Plotting of principal components based upon PCA showed clear, separated clusters between different sulfonamides. This study indicated potential for detection and determination of trace amounts of prohibited or restricted drugs with SERS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Bogialli, R. Curini, A.D. Corcla, M. Nazzari, R. Samperi, Anal. Chem. 1798, 75 (2003)

    Google Scholar 

  2. Specification for the application of sulfonamides in aquaculture, The Ministry of Agriculture, PR China, SC/T 1084-2006

  3. N.A. Littlefield, W.G. Sheldon, R. Allen, D.W. Gaylor, Food Chem. Toxicol. 157, 28 (1990)

    Google Scholar 

  4. D.R. Doerge, C.J. Decker, Chem. Res. Toxicol. 164, 7 (1994)

    Google Scholar 

  5. European Commission, Council Directive 178/2002, Off. J. Eur. Commun. L031, 1 (2002)

    Google Scholar 

  6. Establishment of maximum reside levels of veterinary medical products in foodstuffs of animal origin, The Ministry of Agriculture, PR China, Regulation No. 235 (2002)

  7. I. Pecorelli, R. Bibi, F. Fioroni, R. Galarini, J. Chromatogr. A 23, 1032 (2004)

    Google Scholar 

  8. T.A.M. Msagati, M.M. Hindi, Talanta 87, 64 (2004)

    Google Scholar 

  9. R.J. Stokes, A. Ingram, J. Gallagher, D.R. Armstrong, W.E. Smith, D. Graham, Chem. Commun. 567, 5 (2008)

    Google Scholar 

  10. N. Rodrígueza, M.C. Ortiza, L.A. Sarabiab, A. Herreroa, Anal. Chim. Acta 136, 657 (2010)

    Google Scholar 

  11. L. He, M. Lin, H. Li, N. Kim, J. Raman Spectrosc. 739, 41 (2010)

    Google Scholar 

  12. X. Zhang, N. Shah, R. Van Duyne, Vib. Spectrosc. 2, 42 (2006)

    Google Scholar 

  13. C. Haynes, A. McFarland, R. Van Duyne, Anal. Chem. 338, 77 (2005)

    Google Scholar 

  14. M. Lin, L. He, J. Awika, L. Yang, D.R. Ledoux, H. Li, A. Mustapha, J. Food Sci. 129, 73 (2008)

    Google Scholar 

  15. B. Liu, M. Lin, H. Li, Sens. Instrum. Food Qual. 4, 13 (2010)

    Article  Google Scholar 

  16. T.A. Alexander, Anal. Chem. 2817, 80 (2008)

    Google Scholar 

  17. N. Perney, J. Baumberg, M. Zoorob, M. Charlton, S. Mahnkopf, C. Netti, Opt. Express 847, 14 (2006)

    Google Scholar 

  18. A. Szeghalmi, S. Kaminskyj, P. Rosch, J. Popp, K.M. Gough, J. Phys. Chem. B 12916, 111 (2007)

    Google Scholar 

  19. L. He, Y. Liu, M. Lin, J. Awika, D.R. Ledoux, H. Li, A. Mustapha, Sens. & Instrumen. Food Qual. 66, 2 (2008)

    Google Scholar 

  20. Y. Huang, A.G. Cavinato, D.M. Mayes, G.E. Bledsoe, B.A. Rasco, J. Food Sci. 2543, 67 (2002)

    Google Scholar 

  21. Y. Huang, A.G. Cavinato, J. Tang, B.G. Swanson, M. Lin, B.A. Rasco, LWT Food Sci. Technol. 1018, 40 (2007)

    Google Scholar 

  22. W.S. Sutherlank, J.J. Laserna, M.J. Angebranndt, J.D. Winefordner, Anal. Chem. 689, 62 (1990)

    Google Scholar 

  23. X. Cao, C. Sun, T.J. Thamann, J. Pharm. Sci. 1881, 94 (2005)

    Google Scholar 

  24. C.A. Topacli, J. Topacli, J. Mol. Struct. 145, 644 (2003)

    Google Scholar 

  25. H. Zhu, Spectral Analysis of Organic Molecular Structure. Chapter 2 (Chemical Industry Press, Beijing, 2005), p. 42

    Google Scholar 

  26. J.R. Lombardi, R.A. Birke, Acc. Chem. Res. 734, 42 (2009)

    Google Scholar 

  27. S.E.J. Bell, N.M.S. Sirimuthu, Chem. Soc. Rev. 1012, 37 (2008)

    Google Scholar 

  28. D. Sajan, G.D. Sockalingum, M. Manfait, I. Hubert Joe, V.S. Jayakumar, J. Raman Spectrosc. 1772, 39 (2008)

    Google Scholar 

  29. W.E. Smith, Chem. Soc. Rev. 955, 37 (2008)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Science and Technology Commission of Shanghai Municipality (Project # 09PJ1405200 & 09320503800), the Leading Academic Discipline Project of Shanghai Municipal Education Commission (Project # J50704) and Shanghai Ocean University (A-2400-09-0145). Special thanks go to Dr. Yan-liang Zhang in Thermo Fisher Scientific Inc. for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqun Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, K., Zhai, F., Zhang, Y. et al. Application of surface enhanced Raman spectroscopy for analyses of restricted sulfa drugs. Sens. & Instrumen. Food Qual. 5, 91–96 (2011). https://doi.org/10.1007/s11694-011-9115-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-011-9115-7

Keywords

Navigation