Skip to main content
Log in

Sprouting detection at early stages in individual CWAD and CWRS wheat kernels using SWIR spectroscopy

  • Original Paper
  • Published:
Sensing and Instrumentation for Food Quality and Safety Aims and scope Submit manuscript

Abstract

Reflectance spectra (1,250–2,390 nm) of two classes of western Canadian wheat (CWAD and CWRS) were studied to detect sprouting damage in individual kernels at the early stages of germination. Alpha-amylase activity levels were used as an indicator for the sprouting stage. Partial least squared discriminant analysis (PLSDA) and Logistic regression methods were used to build classification models. The optimal threshold α-amylase activity value for the separation of sprout damage classes was determined according to the area under the ROC curves. The results show that both PLSDA and logistic regression could distinguish kernels with an α-amylase activity larger than 1 SKB unit of activity from those with less enzyme activity. A total classification accuracy of over 91 and 86% was obtained for CWRS and CWAD, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. CGC Anonymous, Grades of Grain. Available at: http://www.grainscanada.gc.ca/legislation-legislation/regulation-reglement/2008/sch-ann-3-2008-eng.pdf (2008)

  2. H. Koc, V.W. Smail, D. L. Wetzel, J. Cereal Sci. 48, 394 (2008)

    Google Scholar 

  3. P.R. Armstrong, E.B. Maghirang, F. Xie, F.E. Dowell, Appl. Eng. Agric. 22, 767 (2006)

    Google Scholar 

  4. T. Bramble, F.E. Dowell, T.J. Herrman, Appl. Eng. Agric. 22, 945 (2006)

    Google Scholar 

  5. N. Shimizu, H. Okadome, D. Wada, T. Kimura, K. Ohesubo, ASAE Annual International Meeting, Tampa, FL, 2005

  6. E.B. Maghirang, F.E. Dowell, J.E. Baker, J.E. Throne, Trans. ASAE. 46, 1277 (2003)

    Google Scholar 

  7. S.R. Delwiche, C.S. Gaines, Appl. Eng. Agric. 21, 681 (2005)

    Google Scholar 

  8. M.C. Pasikatan, F.E. Dowell, Appl. Eng. Agric. 19, 71 (2003)

    Google Scholar 

  9. S. Neethirajana, D.S. Jayas, N.D.G. White, J. Food Eng. 81, 509 (2007)

    Article  Google Scholar 

  10. T.C. Pearson, A.E. Cetin, A.H. Tewfik, R.P. Haff, Digit. Signal Process. 17, 617 (2007)

    Article  Google Scholar 

  11. G.W. Heitschmidt, B. Park, K.C. Lawrence, W.R. Windham, D.P. Smith, Trans. ASABE. 50, 1427 (2007)

    Google Scholar 

  12. S. Kawamura, M. Kawasaki, H. Nakatsuji, M. Natsuga, Sens. Instrum. Food Qual. Saf. 1, 37 (2007)

    Article  Google Scholar 

  13. H.K. Noh, Y. Peng, R. Lu, Trans. ASAE. 50, 963 (2007)

    Google Scholar 

  14. J. Xing, P.V. Hung, S. Symons, M. Shahin, D. Hatcher, Sens. Instrum. Food Qual. Saf. 3(4), 211 (2009)

    Google Scholar 

  15. R. Lu, Trans. ASAE. 46, 523 (2003)

    Google Scholar 

  16. C. Yang, J.H. Everitt, J.M. Bradford, Trans. ASAE. 47, 915 (2004)

    Google Scholar 

  17. A.A. Gowen, C.P. O’Donnell, P.J. Cullen, G. Downey, J.M. Frias, Trends Food Sci. Technol. 18, 590 (2007)

    Article  CAS  Google Scholar 

  18. J. Xing, W. Saeys, J. De Baerdemaeker, Comput. Electron. Agric. 56, 1 (2007)

    Article  Google Scholar 

  19. G. Musumarra, V. Barresi, D.F. Condorelli, C.G. Fortuna, S. Scire, J. Chemom. 18, 125 (2004)

    Article  CAS  Google Scholar 

  20. J. Xing, W. Saeys, J. De Baerdemaeker, J. Compag. 56, 1 (2007)

    Google Scholar 

  21. D.W. Sun (ed.), Infrared Spectroscopy for Food Quality Analysis and Control (Academic Press, USA, 2009), p. 97

    Google Scholar 

  22. C.S. Coffey, P.R. Hebert, M.D. Ritchie, H.M. Krumholz, J.M. Gaziano, P.M. Ridker, N.J. Brown, D.E. Vaughan, J.H. Moore, BMC Bioinform 5, 49 (2004)

    Article  Google Scholar 

  23. T. Fawcett, Pattern Recogn. 27, 861 (2006)

    Article  Google Scholar 

  24. Anonymous, Available at http://gim.unmc.edu/dxtests/roc3.htm.

  25. I.G. Chong, C.H. Jun, Chemom. Intell. Lab. Syst. 78, 103 (2005)

    Article  CAS  Google Scholar 

  26. D.A. Burns, E.W. Ciurczak, Handbook of Near-Infrared Analysis (CRC Press, Boca Raton, FL, 2007), p. 399

Download references

Acknowledgments

The authors gratefully acknowledge the assistance of Loni Powell and Lisa vanSchepdael of the Grain Research Laboratory for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Symons.

Additional information

GRL Publication # 1034.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, J., Symons, S., Shahin, M. et al. Sprouting detection at early stages in individual CWAD and CWRS wheat kernels using SWIR spectroscopy. Sens. & Instrumen. Food Qual. 4, 95–100 (2010). https://doi.org/10.1007/s11694-010-9099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-010-9099-8

Keywords

Navigation