Skip to main content
Log in

Assessment of bacterial biofilm on stainless steel by hyperspectral fluorescence imaging

  • Original Paper
  • Published:
Sensing and Instrumentation for Food Quality and Safety Aims and scope Submit manuscript

Abstract

Hyperspectral fluorescence imaging techniques were investigated for detection of two genera of microbial biofilms on stainless steel material which is commonly used to manufacture food processing equipment. Stainless steel coupons were deposited in nonpathogenic E. coli O157:H7 and Salmonella cultures, prepared using M9 minimal medium with casamino acids (M9C), for 6 days at 37 °C. Hyperspectral fluorescence emission images of the biofilm formations on the stainless coupons were acquired from 416 to 700 nm with the use of ultraviolet-A (320–400 nm) excitation. In general, emission peaks for both bacteria were observed in the blue region at approximately 480 nm and thus provided the highest contrast between the biofilms and background stainless steel coupons. A simple thresholding of the 480 nm image showed significantly larger biofilm regions for E. coli O157:H7 than for Salmonella. Viable cell counts suggested that Salmonella formed significantly higher density biofilm regions than E. coli O157:H7 in M9C medium. On the basis of principal component analysis (PCA) of the hyperspectral fluorescence images, the second principal component image exhibited the most distinguishable morphological differences for the concentrated biofilm formations between E. coli and Salmonella. E. coli formed granular aggregates of biofilms above the medium on stainless steel while Salmonella formed dense biofilm in the medium-air interface region (pellicle). This investigation demonstrated the feasibility of implementing fluorescence imaging techniques to rapidly screen large surface areas of food processing equipment for bacterial contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.A. Niemira, Appl. Environ. Microbiol. 73(10), 3239–3244 (2007). doi:10.1128/AEM.02764-06

    Article  CAS  Google Scholar 

  2. M. Kalmokoff, P. Lanthier, T.-L. Tremblay, M. Foss, P.C. Lau, G. Sanders, J. Austin, J. Kelly, C.M. Szymanski, J. Bacteriol. 188(12), 4312–4320 (2006). doi:10.1128/JB.01975-05

    Article  CAS  Google Scholar 

  3. R.M. Donlan, J.W. Costerton, Clin. Microbiol. Rev. 15(2), 167–193 (2002). doi:10.1128/CMR.15.2.167-193.2002

    Article  CAS  Google Scholar 

  4. R.A.N. Chmielewski, J.F. Frank, Compr. Rev. Food Sci. Food Saf. 2(1), 22–32 (2003). doi:10.1111/j.1541-4337.2003.tb00012.x

    Article  CAS  Google Scholar 

  5. C. Keevil, Encyclopedia of Environmental Microbiology. (Wiley, New York, 2002), pp. 2339–2356

  6. B. Carpentier, O. Cerf, J. Appl. Bacteriol. 75(6), 499–511 (1993)

    CAS  Google Scholar 

  7. C.G. Kumar, S.K. Anand, Int. J. Food Microbiol. 42(1–2), 9–27 (1998). doi:10.1016/S0168-1605(98)00060-9

    Article  CAS  Google Scholar 

  8. S.S. Branda, A. Vik, L. Friedman, R. Kolter, Trends Microbiol. 13(1), 20–26 (2005). doi:10.1016/j.tim.2004.11.006

    Article  CAS  Google Scholar 

  9. D. Ivnitski, I. Abdel-Hamid, P. Atanasov, E. Wilkins, Biosens. Bioelectron. 14(7), 599–624 (1999). doi:10.1016/S0956-5663(99)00039-1

    Article  CAS  Google Scholar 

  10. M.S. Kim, Y.R. Chen, P.M. Mehl, Trans. ASAE 44, 721–729 (2001)

    Google Scholar 

  11. B. Cho, Y.R. Chen, M.S. Kim, Comput. Electron. Agric. 57(2), 177–189 (2007). doi:10.1016/j.compag.2007.03.008

    Article  Google Scholar 

  12. M.S. Kim, A.M. Lefcourt, Y.R. Chen, T. Yang, J. Food Eng. 71(1), 85–91 (2005). doi:10.1016/j.jfoodeng.2004.10.022

    Article  Google Scholar 

  13. M.S. Kim, Y.R. Chen, B.K. Cho, K. Chao, C. Yang, A.M. Lefcourt, D. Chan, Sens. Instrum. Food Qual. Saf. 1(2), 151–159 (2007). doi:10.1007/s11694-007-9017-x

    Article  Google Scholar 

  14. M.S. Kim, A.M. Lefcourt, Y.R. Chen, Appl. Opt. 42(19), 3927–3934 (2003). doi:10.1364/AO.42.003927

    Article  Google Scholar 

  15. J.H. Ryu, H. Kim, J.F. Frank, L.R. Beuchat, Lett. Appl. Microbiol. 39(4), 359–362 (2004). doi:10.1111/j.1472-765X.2004.01591.x

    Article  Google Scholar 

  16. R.A. Pimentel, Morphometrics—The Multivariate Analysis of Biological Data (Kendall/Hunt, Dubuque, 1979)

    Google Scholar 

  17. K. Scher, U. Romling, S. Yaron, Appl. Environ. Microbiol. 71(3), 1163–1168 (2005). doi:10.1128/AEM.71.3.1163-1168.2005

    Article  CAS  Google Scholar 

  18. X. Zogaj, M. Nimtz, M. Rohde, W. Bokranz, U. Romling, Mol. Microbiol. 39(6), 1452–1463 (2001). doi:10.1046/j.1365-2958.2001.02337.x

    Article  CAS  Google Scholar 

  19. A. Reisner, K.A. Krogfelt, B.M. Klein, E.L. Zechner, S. Molin, J. Bacteriol. 188(10), 3572–3581 (2006). doi:10.1128/JB.188.10.3572-3581.2006

    Article  CAS  Google Scholar 

  20. P. Leonard, S. Hearty, J. Brennan, L. Dunne, J. Quinn, T. Chakraborty, R. O’Kennedy, Enzyme Microb. Technol. 32(1), 3–13 (2003). doi:10.1016/S0141-0229(02)00232-6

    Article  CAS  Google Scholar 

  21. O. Lazcka, F.J.D. Campo, F.X. Munoz, Biosens. Bioelectron. 22(7), 1205–1217 (2007). doi:10.1016/j.bios.2006.06.036

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors thank Ms. Diane Chan of the Food Safety Laboratory, ARS, USDA for helping with hyperspectral image collection and reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon S. Kim.

Additional information

Company and product names are used for clarity and do not imply any endorsement by USDA to the exclusion of other comparable products.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jun, W., Kim, M.S., Lee, K. et al. Assessment of bacterial biofilm on stainless steel by hyperspectral fluorescence imaging. Sens. & Instrumen. Food Qual. 3, 41–48 (2009). https://doi.org/10.1007/s11694-009-9069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-009-9069-1

Keywords

Navigation