Assessment of bacterial biofilm on stainless steel by hyperspectral fluorescence imaging

  • Won Jun
  • Moon S. Kim
  • Kangjin Lee
  • Patricia Millner
  • Kuanglin Chao
Original Paper


Hyperspectral fluorescence imaging techniques were investigated for detection of two genera of microbial biofilms on stainless steel material which is commonly used to manufacture food processing equipment. Stainless steel coupons were deposited in nonpathogenic E. coli O157:H7 and Salmonella cultures, prepared using M9 minimal medium with casamino acids (M9C), for 6 days at 37 °C. Hyperspectral fluorescence emission images of the biofilm formations on the stainless coupons were acquired from 416 to 700 nm with the use of ultraviolet-A (320–400 nm) excitation. In general, emission peaks for both bacteria were observed in the blue region at approximately 480 nm and thus provided the highest contrast between the biofilms and background stainless steel coupons. A simple thresholding of the 480 nm image showed significantly larger biofilm regions for E. coli O157:H7 than for Salmonella. Viable cell counts suggested that Salmonella formed significantly higher density biofilm regions than E. coli O157:H7 in M9C medium. On the basis of principal component analysis (PCA) of the hyperspectral fluorescence images, the second principal component image exhibited the most distinguishable morphological differences for the concentrated biofilm formations between E. coli and Salmonella. E. coli formed granular aggregates of biofilms above the medium on stainless steel while Salmonella formed dense biofilm in the medium-air interface region (pellicle). This investigation demonstrated the feasibility of implementing fluorescence imaging techniques to rapidly screen large surface areas of food processing equipment for bacterial contamination.


Biofilm Bacteria Hyperspectral imaging Fluorescence 



Authors thank Ms. Diane Chan of the Food Safety Laboratory, ARS, USDA for helping with hyperspectral image collection and reviewing the manuscript.


  1. 1.
    B.A. Niemira, Appl. Environ. Microbiol. 73(10), 3239–3244 (2007). doi: 10.1128/AEM.02764-06 CrossRefGoogle Scholar
  2. 2.
    M. Kalmokoff, P. Lanthier, T.-L. Tremblay, M. Foss, P.C. Lau, G. Sanders, J. Austin, J. Kelly, C.M. Szymanski, J. Bacteriol. 188(12), 4312–4320 (2006). doi: 10.1128/JB.01975-05 CrossRefGoogle Scholar
  3. 3.
    R.M. Donlan, J.W. Costerton, Clin. Microbiol. Rev. 15(2), 167–193 (2002). doi: 10.1128/CMR.15.2.167-193.2002 CrossRefGoogle Scholar
  4. 4.
    R.A.N. Chmielewski, J.F. Frank, Compr. Rev. Food Sci. Food Saf. 2(1), 22–32 (2003). doi: 10.1111/j.1541-4337.2003.tb00012.x CrossRefGoogle Scholar
  5. 5.
    C. Keevil, Encyclopedia of Environmental Microbiology. (Wiley, New York, 2002), pp. 2339–2356Google Scholar
  6. 6.
    B. Carpentier, O. Cerf, J. Appl. Bacteriol. 75(6), 499–511 (1993)Google Scholar
  7. 7.
    C.G. Kumar, S.K. Anand, Int. J. Food Microbiol. 42(1–2), 9–27 (1998). doi: 10.1016/S0168-1605(98)00060-9 CrossRefGoogle Scholar
  8. 8.
    S.S. Branda, A. Vik, L. Friedman, R. Kolter, Trends Microbiol. 13(1), 20–26 (2005). doi: 10.1016/j.tim.2004.11.006 CrossRefGoogle Scholar
  9. 9.
    D. Ivnitski, I. Abdel-Hamid, P. Atanasov, E. Wilkins, Biosens. Bioelectron. 14(7), 599–624 (1999). doi: 10.1016/S0956-5663(99)00039-1 CrossRefGoogle Scholar
  10. 10.
    M.S. Kim, Y.R. Chen, P.M. Mehl, Trans. ASAE 44, 721–729 (2001)Google Scholar
  11. 11.
    B. Cho, Y.R. Chen, M.S. Kim, Comput. Electron. Agric. 57(2), 177–189 (2007). doi: 10.1016/j.compag.2007.03.008 CrossRefGoogle Scholar
  12. 12.
    M.S. Kim, A.M. Lefcourt, Y.R. Chen, T. Yang, J. Food Eng. 71(1), 85–91 (2005). doi: 10.1016/j.jfoodeng.2004.10.022 CrossRefGoogle Scholar
  13. 13.
    M.S. Kim, Y.R. Chen, B.K. Cho, K. Chao, C. Yang, A.M. Lefcourt, D. Chan, Sens. Instrum. Food Qual. Saf. 1(2), 151–159 (2007). doi: 10.1007/s11694-007-9017-x CrossRefGoogle Scholar
  14. 14.
    M.S. Kim, A.M. Lefcourt, Y.R. Chen, Appl. Opt. 42(19), 3927–3934 (2003). doi: 10.1364/AO.42.003927 CrossRefGoogle Scholar
  15. 15.
    J.H. Ryu, H. Kim, J.F. Frank, L.R. Beuchat, Lett. Appl. Microbiol. 39(4), 359–362 (2004). doi: 10.1111/j.1472-765X.2004.01591.x CrossRefGoogle Scholar
  16. 16.
    R.A. Pimentel, Morphometrics—The Multivariate Analysis of Biological Data (Kendall/Hunt, Dubuque, 1979)Google Scholar
  17. 17.
    K. Scher, U. Romling, S. Yaron, Appl. Environ. Microbiol. 71(3), 1163–1168 (2005). doi: 10.1128/AEM.71.3.1163-1168.2005 CrossRefGoogle Scholar
  18. 18.
    X. Zogaj, M. Nimtz, M. Rohde, W. Bokranz, U. Romling, Mol. Microbiol. 39(6), 1452–1463 (2001). doi: 10.1046/j.1365-2958.2001.02337.x CrossRefGoogle Scholar
  19. 19.
    A. Reisner, K.A. Krogfelt, B.M. Klein, E.L. Zechner, S. Molin, J. Bacteriol. 188(10), 3572–3581 (2006). doi: 10.1128/JB.188.10.3572-3581.2006 CrossRefGoogle Scholar
  20. 20.
    P. Leonard, S. Hearty, J. Brennan, L. Dunne, J. Quinn, T. Chakraborty, R. O’Kennedy, Enzyme Microb. Technol. 32(1), 3–13 (2003). doi: 10.1016/S0141-0229(02)00232-6 CrossRefGoogle Scholar
  21. 21.
    O. Lazcka, F.J.D. Campo, F.X. Munoz, Biosens. Bioelectron. 22(7), 1205–1217 (2007). doi: 10.1016/j.bios.2006.06.036 CrossRefGoogle Scholar

Copyright information

© USDA, Agricultural Research Service 2009

Authors and Affiliations

  • Won Jun
    • 1
  • Moon S. Kim
    • 1
  • Kangjin Lee
    • 2
  • Patricia Millner
    • 1
  • Kuanglin Chao
    • 1
  1. 1.Food Safety Laboratory, Animal and Natural Resources InstituteU.S. Department of Agriculture, Agricultural Research ServiceBeltsvilleUSA
  2. 2.National Institute of Agricultural Engineering, Rural Development AdministrationSuwonRepublic of Korea

Personalised recommendations