Skip to main content

Advertisement

Log in

Characterizing the memory of the GAL regulatory network in Saccharomyces cerevisiae

  • Research Article
  • Published:
Systems and Synthetic Biology

Abstract

Genetic regulatory networks respond dynamically to perturbations in the intracellular and extracellular environments of an organism. The GAL system in the yeast Saccharomyces cerevisiae has evolved to utilize galactose as an alternative carbon and energy source, in the absence of glucose in the environment. We present a dynamic model for GAL system in Saccharomyces cerevisiae, which includes a novel mechanism for Gal3p activation upon induction with galactose. The modification enables the model to simulate the experimental observation that in absence of galactose, oversynthesis of Gal3p can also induce the GAL system. We then characterize the memory of the GAL system as the domain of attraction of the steady states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acar M, Becksei A, van Oudenaarden A (2005) Enhancement of cellular memory by reducing stochastic transitions. Nature 435:228–232

    Article  PubMed  CAS  Google Scholar 

  • Ajo-Franklin CM, Drubin DA, Eskin J, Gee E, Landgraf D, Philips I, Silver PA (2007) Rational design of memory in eukaryotic cells. Genes Dev 21:2271–2276

    Google Scholar 

  • Alon U (1999) An introduction to systems biology: design principles of biological circuits. CRC Press, Chapman and Hall, Boca Raton, FL

    Google Scholar 

  • Amato F, Cosentino C, Fiorilo A, Merola A (2009) Stabilization of bilinear systems via linear state-feedback control. IEEE Trans Circ Syst II Express Briefs 56(1):76–80

    Article  Google Scholar 

  • Amato F, Cosentino C, Merola A (2007) On the region of attraction for nonlinear quadratic systems. Automatica 43:2119–2123

    Article  Google Scholar 

  • Bhat P, Hopper J (1992) Overproduction of the GAL1 or GAL3 protein causes galactose-independent activation of the GAL4 protein: evidence for a new model of induction for the yeast GAL/MEL regulon. Mol Cell Biol 12(6):2701–2707

    PubMed  CAS  Google Scholar 

  • Biggar S, Crabtree G (2001) Cell signalling can detect either binary or graded transcriptional responses. EMBO J 20:3167–3176

    Article  PubMed  CAS  Google Scholar 

  • Boyd S, Ghaoui LE, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM Press, New York

    Book  Google Scholar 

  • Burrill DR, Silver PA (2010) Making cellular memories. Cell 140(1):13–18

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Narendra K (1968) An off-axis circle criterion for the stability of feedback systems with a monotonic nonlinearity. IEEE Trans Autom Control 13:413–416

    Article  Google Scholar 

  • Desoer C, Vidyasagar M (1975) Feedback systems: input-output properties. Academic Press, New York

    Google Scholar 

  • Dong J, Dickinson R (1997) Glucose represses the lactos-galactose regulon in Kluyveromyces lactis through a SNF-1 and MIG1-dependent pathway that modulates galactokinase (GAL1) gene expression. Nucleic Acids Res 25(18):3657–3664

    Article  PubMed  CAS  Google Scholar 

  • Giniger E, Varnum S, Ptashne M (1985) Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40(4):767–774

    Article  PubMed  CAS  Google Scholar 

  • Hawkins KM, Smolke CD (2006) The regulatory roles of the galactose permease and kinase in the induction response of the GAL network in saccharomyces cerevisiea. J Biol Chem 281(19):13485–13492

    Article  PubMed  CAS  Google Scholar 

  • Ideker T, Thorsson V, Ranish J, Christmas R, Buhler J, Eng J, Bumgarner R, Goodlett D, Aebersold R, Hood L (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929–934

    Article  PubMed  CAS  Google Scholar 

  • Johnston M (1987) A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev 51(4):458–476

    PubMed  CAS  Google Scholar 

  • Johnston M, Flick J, Pexton T (1994) Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol Cell Biol 14(6):3834–3841

    PubMed  CAS  Google Scholar 

  • Khalil H (1992) Nonlinear systems. McMillan Press, New York

    Google Scholar 

  • Koditschek D, Narendra K (1983) Stabilizability of second-order bilinear systems. IEEE Trans Autom Control 28(10):987–989

    Article  Google Scholar 

  • Lohr D, Venkov P, Zlatanova J (1995) Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J 9:777–787

    PubMed  CAS  Google Scholar 

  • Materassi D, Salapaka MV (2009) Attraction domain estimates combining lyapunov functions. In: Proceedings of the American control conference. St. Louis, Missouri

  • Megretski A, Rantzer A (1997) System analysis via integral quadratic constraints. IEEE Trans Autom Control AC-42(6):819–830

    Article  Google Scholar 

  • Monod J, Jacob F (1961) Making cellular memories. Cold Spring Harbor Symposium on Quantitative Biology 26:389–401

    CAS  Google Scholar 

  • Platt A, Reece R (1998) The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex. EMBO J 17(14):4086–4091

    Article  PubMed  CAS  Google Scholar 

  • Platt A, Ross H, Hankin S, Reece R (2000) The insertion of two amino acids into a transcriptional inducer converts it into a galactokinase. PNAS 97(7):3154–3159

    Article  PubMed  CAS  Google Scholar 

  • Popov V (1962) Absolute stability of nonlinear systems of automatic control. Autom Remote Control 3: 857–875 (Russian original published in 1961)

  • Rantzer A (2001) Friction analysis based on integral quadratic constraints. Int J Robust Nonlinear Control 11(10/11):645–652

    Article  Google Scholar 

  • Ruhela A, Verma M, Edwards JS, Bhat PJ, Bhatiya S, Venkatesh KV (2004) Autoregulation of regulatory proteins is key for dynamic operation of GAL switch in saccharomyces cerevisiea. FEBS Lett 576:119–126

    Article  PubMed  CAS  Google Scholar 

  • Safonov M (1980) Stability and robustness of multivariable feedback systems. The MIT Press, Cambridge

    Google Scholar 

  • Safonov M, Kulkarni V (2000) Zames-Falb multipliers for MIMO nonlinearities. Int J Robust Nonlinear Control 10(11/12):1025–1038

    Article  Google Scholar 

  • Smidtas S, Schachter V, Kepes S (2006) The adaptive filter of the yeast galactose pathway. J Theor Biol 242:372–381

    Article  PubMed  CAS  Google Scholar 

  • Willems J (1971) The analysis of feedback systems. The MIT Press, Cambridge

    Google Scholar 

  • Yano K, Fukasawa T (2008) Galactose-dependent reversible interaction of Gal3p with Gal80p in the induction pathway of Gal4p-activated genes of Saccharomyces cerevisiae. PNAS 94(5):1721–1726

    Article  Google Scholar 

  • Zames G, Falb P (1968) Stability conditions for systems with monotone and slope-restricted nonlinearities. SIAM J Control Optim 6(1):89–108

    Article  Google Scholar 

  • Zenke F, Engels R, Vollenbroich V, Meyer J, Hollenberg C, Breunig K (1996) Activation of Gal4p by galactose-dependent interaction of galactokinase and Gal80p. Science 272(5268):1662–1665

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported, in parts, by NSF CAREER Award 0845650 and by Department of Science and Technology India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishwesh V. Kulkarni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, V.V., Kareenhalli, V., Viswananthan, G.A. et al. Characterizing the memory of the GAL regulatory network in Saccharomyces cerevisiae . Syst Synth Biol 5, 97–104 (2011). https://doi.org/10.1007/s11693-011-9086-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-011-9086-3

Keywords

Navigation