Skip to main content
Log in

Can we Restore Balance to Geometric Morphometrics? A Theoretical Evaluation of how Sample Imbalance Conditions Ordination and Classification

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The most common means of performing ordination and classification consist in principal component, canonical variate, and between-group principal component analysis (PCA, CVA & bgPCA) for ordination, and linear and partial least squares discriminant analysis (LDA & PLSDA) for classification. Over the years, research has shown how the number of variables used in Geometric Morphometrics can be problematic for studies using small sample sizes. In the case of ordination, this implies an inflation of differences between groups, even when no differences are present. In light of this, classification tasks should also theoretically present exaggerated accuracy scores. Using a theoretically constructed geometric experiment, the present study constructs a series of imbalanced theoretical datasets containing different degrees of variation in both shape and form. Each ordination and classification task is then carried out to observe how imbalance influences the quality of results. Even when using large enough sample sizes, if one sample is considerably smaller than another, then this imbalance will have an effect on both ordination and classification results. Imbalance is thus seen to force separation among samples, and a considerable loss in classification performance. Statistical tests such as Procrustes distance calculations are not affected. The conclusions suggest that prior dimensionality reduction such as PCA are necessary for CVA, bgPCA, LDA and PLSDA. Cross-validated versions of these algorithms should also be used. An extensive discussion is also provided into alternative ordination and classification techniques that could prove useful for Geometric Morphometrics, and that are less sensitive to sample imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

No data was explicitly used for this study, however all R code developed for the simulation of data and experiments can be found at the corresponding author’s GitHub page via: https://github.com/LACourtenay/gmm_ordination_classification_experimental_toolkit.

References

  • Albrecht, G. H. (1992). Assessing the affinities of fossils using canonical variates and generalized distances. Journal of Human Evolution, 7(4), 49–69.

    Article  Google Scholar 

  • Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17, 166–173.

    Article  CAS  Google Scholar 

  • Bendale, A., & Boult, T. E. (2015). Towards open set deep networks. IEEE Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2016.173

    Article  Google Scholar 

  • Bookstein, F. L. (1984). A statistical method for biological shape comparisons. Journal of Theoretical Biology, 107, 475–520.

    Article  CAS  PubMed  Google Scholar 

  • Bookstein, F. L. (1986). Size and shape spaces for landmark data in two dimensions (with discussion). Statistical Science, 1, 181–242.

    Google Scholar 

  • Bookstein, F. L. (1991). Morphometric tools for Landmark Data. Cambridge University Press.

    Google Scholar 

  • Bookstein, F. L. (2017). A newly noticed formula enforces fundamental limits on geometric morphometric analyses. Evolutionary Biology, 44, 522–541. DOI: https://doi.org/10.1007/s11692-017-9424-9.

    Article  Google Scholar 

  • Bookstein, F. L. (2019). Pathologies of between-groups principal components analysis in geometric morphometrics. Evolutionary Biology, 46, 271–302. DOI: https://doi.org/10.1007/s11692-019-09484-8.

    Article  Google Scholar 

  • Boulesteix, A. L. (2004). A note on between-group pca. International Journal of Pure and Applied Mathematics, 19, 359–366.

    Google Scholar 

  • Cardini, A., & Elton, S. (2007). Sample size and sampling error in geometric morphometric studies of size and shape. Zoomorphology, 126, 121–134. DOI: https://doi.org/10.1007/s00435-007-0036-2.

    Article  Google Scholar 

  • Cardini, A., Seetah, K., & Barker, G. (2015). How many specimens do I need? Sampling error in geometric morphometrics: testing the sensitivity of means and variances in simple randomized selection experiments. Zoomorphology, 134, 149–163. DOI: https://doi.org/10.1007/s00435-015-0253-z.

    Article  Google Scholar 

  • Cardini, A., O’Higgins, P., & Rohlf, F. J. (2019). Seeing distinct groups where there are none: spurious patterns from between-group PCA. Evolutionary Biology, 46, 303–316. DOI: https://doi.org/10.1007/s11692-019-09487-5.

    Article  Google Scholar 

  • Cardini, A., & Polly, P. D. (2020). Cross-validated between Group PCA scatterplots: a solution to spurious group separation? Evolutionary Biology, 47, 85–95. DOI: https://doi.org/10.1007/s11692-020-09494-x.

    Article  Google Scholar 

  • Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.

    Article  Google Scholar 

  • Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions. Econometrica, 28(3), 591–605.

    Article  Google Scholar 

  • Cobb, S. N., & O’Higgins, P. (2004). Hominins do not share a common postnatal facial ontogenetic shape trajectory. Journal of Experimental Zoology, 302(B), 302–321.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for behavioural sciences. Routledge.

    Google Scholar 

  • Colquhoun, D. (2019). The false positive risk: a proposal concerning what to do about p-values. The American Statistician, 73(Sup1), 192–201. DOI:https://doi.org/10.1080/00031305.2018.1529622.

    Article  Google Scholar 

  • Coombs, W. T., Aligna, J., & Oltman, D. O. (1996). Univariate and multivariate omnibus hypothesis tests to control type I error rates when population variances are not necessarily equal. Review of Educational Research, 66(2), 137–179.

    Article  Google Scholar 

  • Courtenay, L. A., González-Aguilera, D., Lagüela, S., del Pozo, S., Ruiz-Mendez, C., Barbero-García, I., Román-Curto, C., Cañueto, J., Santos-Durán, C., Cardeñoso-Álvarez, M. E., Roncero-Riesco, M., Hernandez-Lopez, D., Guerrero-Sevilla, D., & Rodríguez-Gonzalvez, P. (2021). Hyperspectral imaging and robust statistics in non-melanoma skin cancer analysis. Biomedical Optics Express, 12(8), 5107–5127. DOI:https://doi.org/10.1364/BOE.428143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Courtenay, L. A., Aramendi, J., & González-Aguilera, D. (xxxx). Recruiting a skeleton crew—methods for simulating and augmenting palaeoanthropological data using Monte Carlo based algorithms. American Journal of Biological Anthropology.

  • Dhamija, A. R., Günther, M., & Boult, T. E. (2018). Reducing network agnostophobia. Neural Information Processing Systems, 32, 1–10.

    Google Scholar 

  • Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics, 7, 1–26.

    Article  Google Scholar 

  • Fernández, A., García, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F. (2018). Learning from imbalanced datasets. Springer.

    Book  Google Scholar 

  • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179–188.

    Article  Google Scholar 

  • Goodall, C. (1991). Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society B, 53(2), 285–339.

    Google Scholar 

  • Gower, J. C. (1975). Generalized procrustes analysis. Pyschometrika, 40, 33–51.

    Article  Google Scholar 

  • Gupta, P. L., & Gupta, R. D. (1987). Sample size determination in estimating a covariance matrix. Computational Statistics and Data Analysis, 5, 185–192.

    Article  Google Scholar 

  • He, H., Bai, Y., Garcia, E.A. & Li, S. (2008) ADASYN: Adaptive synthetic sampling approach for imbalanced learning. Proceedings of the IEEE international joint conference on neural networks, Hong Kong, China, 1–8 June

  • He, H., & Ma, Y. (2013). Imbalanced Learning: foundations, algorithms and applications. Wiley.

    Book  Google Scholar 

  • Hinton, G. E., & Roweis, S. T. (2002). Stochastic neighbor embedding. Advances in Neural Information Processing Systems, 15, 857–864.

    Google Scholar 

  • Kendall, D. G. (1983). The shape of poisson-delaunay triangles. In M. C. Demetrescu, & M. Iosifescu (Eds.), Studies in probabilities and related topics in Honour of Octav Onicescu (pp. 321–330). Nagard.

    Google Scholar 

  • Kendall, D. G. (1984). Shape, manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16, 81–121.

    Article  Google Scholar 

  • Kendall, M. G. (1955). Rank correlation methods. Haffner Publishing Co.

    Google Scholar 

  • Klingenberg, C. P., & Monteiro, L. R. (2005). Distances and directions in multidimensional shape spaces: implications for morphometric applications. Systematic Biology, 54(4), 678–688. DOI: https://doi.org/10.1080/10635150590947258.

    Article  PubMed  Google Scholar 

  • Klingenberg, C. P. (2013). Cranial integration and modularity: insights into evolution and development from morphometric data. Hystrix Italian Journal of Mammology, 24, 43–58.

    Google Scholar 

  • Liu, X. Y., & Zhou, Z. H. (2013). Ensemble methods for class imbalance learning. In: H. He and Y. Ma (Eds.) Imbalanced Learning. 61–82

  • Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605.

    Google Scholar 

  • Mardia, K. V., Kent, J. T., & Bibby, J. M. (1997). Multivariate analysis. Academic Press.

    Google Scholar 

  • Marčenko, V. A., & Pastur, L. A. (1967). Distribution of eigenvalues for some sets of random matrices. Mathematics of the USSR Sbornik, 1, 457–483.

    Article  Google Scholar 

  • McInnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform Manifold approximation and projection. Journal of Open Source Software, 3(29), 861. DOI: https://doi.org/10.22105/joss.00861.

    Article  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. (2011). Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evolutionary Biology, 38, 100–114. doi:https://doi.org/10.1007/s11692-011-9109-8.

    Article  Google Scholar 

  • Nguyen, A., Yosinski, J., & Clune, J. (2015). Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. Computer Vision and Pattern Recognition, 15, 427–436.

    Google Scholar 

  • O’Higgins, P., & Dryden, I. L. (1993). Sexual dimorphism in hominoids: further studies of craniofacial shape differences in Pan, Gorilla and Pongo. Journal of Human Evolution, 24, 182–205.

    Google Scholar 

  • Pearson, K. (1895). Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London. 58:347–352

  • Rao, C. R. (1951). An asymptotic expansion of the distribution of Wilk’s criterion. Bulletin of the International Statistical Institute, 33(2), 177–180.

    Google Scholar 

  • Rokach, L. (2010). Pattern classification using ensemble methods. World Scientific.

    Google Scholar 

  • Rohlf, J. F. (1996). Morphometric spaces, shape components, and the effects of linear transformations. In L. F. Marcus, M. Corti, A. Loy, G. P. Naylor; and, & D. E. Slice (Eds.), Advances in Morphometrics (pp. 117–129). Plenum.

    Chapter  Google Scholar 

  • Rohlf, J. F. (1999). Shape statistics: Procrustes superimposition and tangent spaces. Journal of Classification, 16, 197–223.

    Article  Google Scholar 

  • Rohlf, J. F. (2000a). On the use of shape spaces to compare morphometric methods. Hystrix Italian Journal of Mammology, 11, 8–24.

    Google Scholar 

  • Rohlf, J. F. (2000b). Statistical power comparisons among alternative morphometric methods. American Journal of Physical Anthropology, 111, 463–478.

    Article  CAS  PubMed  Google Scholar 

  • Rohlf, J. F. (2021). Why clusters and other patterns can seem to be found in analyses of high-dimensional data. Evolutionary Biology, 48, 1–16. DOI: https://doi.org/10.1007/s11692-020-09518-6.

    Article  Google Scholar 

  • Shannon, C. E. (1948a). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.

    Article  Google Scholar 

  • Shannon, C. E. (1948b). A mathematical theory of communication. The Bell System Technical Journal, 27(4), 623–656. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb00917.x.

    Article  Google Scholar 

  • Slice, D. E. (2001). Landmark coordinates aligned by procrustes analysis do not lie in Kendall’s shape space. Systematic Biology, 50(1), 141–149.

    Article  CAS  PubMed  Google Scholar 

  • Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2014). Intriguing properties of neural networks. International Conference on Learning Representations. https://arxiv.org/abs/1312.6199. Accessed 17 June 2022

  • Takeshita, T., Nozawa, S., & Kimura, F. (1993). On the bias of Mahalanobis distance due to limited sample size effect. Proceedings of the International Conference on Document Analysis and Recognition, 2, 171–174. https://doi.org/10.1109/ICDAR.1993.395756

    Article  Google Scholar 

  • Zhou, Z. H. (2012). Ensemble methods: foundations and algorithms. Taylor & Francis.

    Book  Google Scholar 

Download references

Acknowledgements

The corresponding author would like to thank Julia Aramendi for her support and suggestions when carrying out his research.

Funding

L.A.C. is funded by the Spanish Ministry of Science, Innovation and Universities with an FPI Predoctoral Grant (Ref. PRE2019-089411), associated with the project RTI2018-099850-B-I00 and the University of Salamanca.

Author information

Authors and Affiliations

Authors

Contributions

L.A.C. Conceptualization, Formal Analysis, Investigation, Methodology, Software, Visualization, Writing – Original Draft, Review & Editing.

Corresponding author

Correspondence to Lloyd A. Courtenay.

Ethics declarations

Conflict of interest

The corresponding author has no competing interests to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Courtenay, L.A. Can we Restore Balance to Geometric Morphometrics? A Theoretical Evaluation of how Sample Imbalance Conditions Ordination and Classification. Evol Biol 50, 90–110 (2023). https://doi.org/10.1007/s11692-022-09590-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-022-09590-0

Keywords

Navigation