Allin, E. F. (1975). Evolution of the mammalian middle ear. Journal of Morphology,147(4), 403–437.
CAS
PubMed
Google Scholar
Altenberg, L. (1995). Genome growth and the evolution of the genotype-phenotype map. In W. Banzhaf & F. H. Eeckman (Eds.), Evolution and biocomputation: Computational models of evolution. Lecture notes in computer science. vol. 899, Berlin: Springer
Google Scholar
Anson, B. J., & Cauldwell, E. W. (1941). Growth of the human stapes. Quarterly Bulletin of the Northwestern University Medical School,15(4), 263–269.
PubMed Central
Google Scholar
Anthwal, N., & Thompson, H. (2016). The development of the mammalian outer and middle ear. Journal of Anatomy,228(2), 217–232.
PubMed
Google Scholar
Ashmore, J., Avan, P., Brownell, W. E., et al. (2010). The remarkable cochlear amplifier. Hearing Research,266, 1–17.
CAS
PubMed
PubMed Central
Google Scholar
Benson, R. J. B., Starmer-Jones, E., Close, R. A., et al. (2017). Comparative analysis of vestibular ecomorphology in birds. Journal of Anatomy,231(6), 990–1018.
PubMed
PubMed Central
Google Scholar
Berlin, J. C., Kirk, E. C., & Rowe, T. B. (2013). Functional implications of ubiquitous semicircular canal non-orthogonality in mammals. PLoS ONE,8(11), e79585.
PubMed
PubMed Central
Google Scholar
Billet, G., Hautier, L., Asher, R. J., et al. (2012). High morphological variation of vestibular system accompanies slow and infrequent locomotion in three-toed sloths. Proceedings of the Royal Society B: Biological Sciences,279, 3932–3939.
PubMed
Google Scholar
Brownell, W. E., Bader, C. R., Bertrand, D., et al. (1985). Evoked mechanical responses of isolated cochlear outer hair cells. Science,227, 194–196.
CAS
PubMed
Google Scholar
Cassini, C. H., Flores, D. A., & Vizcaino, S. F. (2012). Postnatal ontogenetic scaling of Nesodontine (Notoungulata, Toxodontidae) cranial morphology. Acta Zoologica (Stockholm),93, 249–259.
Google Scholar
Cobb, S. N., & O'Higgins, P. (2004). Hominins do not share a common postnatal facial ontogenetic shape trajectory. Journal of Experimental Zoology Part B,302B, 302–321.
Google Scholar
Dickson, B. V., Sherratt, E., Losos, J. B., et al. (2017). Semicircular canals in Anolis lizards: Ecomorphological convergence and ecomorph affinities of fossil species. Royal Society Open Science,4(10), 170058. https://doi.org/10.1098/rsos.170058.
Article
PubMed
PubMed Central
Google Scholar
Dallos, P., Wu, X., Cheatham, M. A., et al. (2008). Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron,58, 333–339.
CAS
PubMed
PubMed Central
Google Scholar
Eby, T. L., & Nadol, J. B. (1986). Postnatal growth of the human temporal bone: Implications for cochlear implants in children. Annals of Otology, Rhinology & Laryngology,95(4), 356–364.
CAS
Google Scholar
Ekdale, E. G. (2013). Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PLoS ONE,8(6), e66624.
CAS
PubMed
PubMed Central
Google Scholar
Ekdale, E. G. (2016). Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PLoS One, 8, e66624.
Google Scholar
Fleischer, G. (1978). Evolutionary principles of the mammalian middle ear. Advances in Anatomy, Embryology and Cell Biology,55(5), 1–70.
Google Scholar
Foth, C., Evers, S. W., Joyce, W. G., et al. (2019). Comparative analysis of the shape and size of the middle ear cavity of turtles reveals no correlation with habitat ecology. Journal of Anatomy,235, 1078–1097.
PubMed
Google Scholar
Garcia-Perea, R. (1996). Patterns of postnatal development in skulls of lynxes, genus Lynx (Mammalia: Carnivora). Journal of Morphology,229(3), 241–254.
CAS
PubMed
Google Scholar
Gleich, O., & Manley, G. A. (2000). The hearing organ in birds and Crocodilia. In R. J. Dooloing, R. R. Fay, & A. N. Popper (Eds.), Comparative hearing: Birds and reptiles (pp. 70–138). New York: Springer.
Google Scholar
Gridi-Papp, M., & Narins, P. M. (2009). Environmental influences in the evolution of tetrapod hearing sensitivity and middle ear tuning. Integrative and Comparative Biology,49(6), 702–716.
PubMed
Google Scholar
Han, G., Mao, F., Bi, S., et al. (2017). A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones. Nature,551, 451–456.
CAS
PubMed
Google Scholar
Hansen, T. F., & Houle, D. (2008). Measuring and comparing evolutionary constraint in multivariate characters. Journal of Evolutionary Biology,21(5), 1201–1219.
CAS
PubMed
Google Scholar
Jones, A. G., Arnold, S., & Bürger, R. (2007). The mutation matrix and the evolution of evolvability. Evolution,61, 727–745.
PubMed
Google Scholar
Hendrikse, J. L., Parsons, T. E., & Hallgrímsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development,9(4), 393–401.
Google Scholar
Ketten, D. R. (1992). The marine mammal ear: specializations for aquatic audition and echolocation. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 717–750). New York: Springer.
Google Scholar
Kirschner, M. W., & Gerhart, J. C. (1998). Evolvability. Proceedings of the National Academy of Sciences of the United States of America,95(15), 8420–8427.
CAS
PubMed
PubMed Central
Google Scholar
Koyabu, D., Hosojima, M., & Endo, H. (2017). Into the dark: Patterns of middle ear adaptations in subterranean eulipotyphlan mammals. Royal Society Open Science,4(9), 170608.
PubMed
PubMed Central
Google Scholar
Köppl, C., & Manley, G. A. (2018). A functional perspective on the evolution of the cochlea. Cold Spring Harbor Perspectives in Medicine,9(6), a033241.
Google Scholar
Kösling, S., Omenzetter, M., & Bartel-Friedrich, S. (2009). Congenital malformations of the external and middle ear. European Journal of Radiology,69(2), 269–279.
PubMed
Google Scholar
Le Maître, A. (2019). The role of spatial integration in the morphology of the bony labyrinth in modern humans. Bulletins et Mémoires de la Société d’Anthropologie de Paris BMSAP,31, 34–42.
Google Scholar
Le Maître, A., Schuetz, P., Vignaud, P., et al. (2017). New data about semicircular canal morphology and locomotion in modern hominoids. Journal of Anatomy,231(1), 95–109.
PubMed
PubMed Central
Google Scholar
Luo, Z.-X. (2007). Successive diversifications in early mammalian evolution. In J. S. Anderson & H.-D. Sues (Eds.), Major transitions in vertebrate evolution (pp. 337–391). Bloomington: Indiana University Press.
Google Scholar
Luo, Z.-X. (2011). Developmental patterns in mesozoic evolution of mammal ears. Annual Review of Ecology, Evolution, and Systematics,42, 355–380.
Google Scholar
Luo, Z.-X., Meng, Q.-J., Grossnickle, D. M., et al. (2017). New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature,548, 326–332.
CAS
PubMed
Google Scholar
Maier, W. (1990). Phylogeny & ontogeny of the mammalian middle ear structures. Netherlands Journal of Zoology,40, 55–74.
Google Scholar
Malinzak, M. D., Kay, R. F., & Hullar, T. E. (2012). Locomotor head movements and semicircular canal morphology in primates. Proceedings of the National Academy of Sciences,109(44), 17914–17919.
CAS
Google Scholar
Manley, G. A. (2012). Evolutionary paths to mammalian cochleae. Journal of the Association for Research in Otolaryngology,13(6), 733–743.
PubMed
PubMed Central
Google Scholar
Mao, F., Hu, Y., Li, C., et al. (2019). Integrated hearing and chewing modules decoupled in a Cretaceous stem therian mammal. Science. https://doi.org/10.1126/science.aay9220.
Article
PubMed
Google Scholar
Martin, T., & Luo, Z.-X. (2005). Homoplasy in the mammalian ear. Science,307(5711), 861–862.
CAS
PubMed
Google Scholar
Mason, M. J. (2013). Of mice, moles and guinea pigs: Functional morphology of the middle ear in living mammals. Hearing Research,301, 4–18.
PubMed
Google Scholar
Mason, M. J. (2016). Structure and function of the mammalian middle ear II: Inferring function from structure. Journal of Anatomy, 228, 300–312.
PubMed
Google Scholar
Mayer, C., & Hansen, T. F. (2017). Evolvability and robustness: A paradox restored. Journal of Theoretical Biology,430, 78–85.
PubMed
Google Scholar
Melo, D., Porto, A., Cheverud, J. M., & Marroig, G. (2016). Modularity: Genes, development and evolution. Annual Review of Ecology, Evolution, and Systematics,47, 463–486.
PubMed
PubMed Central
Google Scholar
Mennecart, B., & Costeur, L. (2016). Shape variation and ontogeny of the ruminant bony labyrinth, an example in Tragulidae. Journal of Anatomy,229(3), 422–435.
PubMed
PubMed Central
Google Scholar
Meng, J., Wang, Y., & Li, C. (2011). Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature,472, 181–185.
CAS
PubMed
Google Scholar
Mitteroecker, P. (2009). The developmental basis of variational modularity: Insights from quantitative genetics, morphometrics, and developmental biology. Evolutionary Biology,36(4), 377–385.
Google Scholar
Mitteroecker, P., Gunz, P., Bernhard, M., et al. (2004). Comparison of cranial ontogenetic trajectories among hominoids. Journal of Human Evolution,46(6), 679–698.
PubMed
Google Scholar
Mitteroecker, P., Bartsch, S., Erkinger, C., Grunstra, N. D. S., Le Maître, A., & Bookstein, F. L. (2020). Morphometric variation at different spatial scales: Coordination and compensation in the emergence of organismal form. Systematic Biology, Early View. https://doi.org/10.1093/sysbio/syaa007.
Article
Google Scholar
Neubauer, S., Gunz, P., & Hublin, J.-J. (2010). Endocranial shape changes during growth in chimpanzees and humans: A morphometric analysis of unique and shared aspects. Journal of Human Evolution,5, 555–566.
Google Scholar
Oka, K., Oka, S., Sasaki, T., et al. (2007). The role of TGF-β signaling in regulating chondrogenesis and osteogenesis during mandibular development. Developmental Biology,303(1), 391–404.
CAS
PubMed
Google Scholar
Pavličev, M., & Hansen, T. F. (2011). Genotype–phenotype maps maximizing evolvability: Modularity revisited. Evolutionary Biology,38(4), 371–389.
Google Scholar
Pavličev, M., & Wagner, G. P. (2012). A model of developmental evolution: Selection, pleiotropy and compensation. Trends in Ecology & Evolution,27(6), 316–322.
Google Scholar
Payne, J. L., & Wagner, A. (2018). The causes of evolvability and their evolution. Nature Reviews Genetics,20, 24–38.
Google Scholar
Peterson, T., & Müller, G. B. (2013). What is evolutionary novelty? Process versus character based definitions. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution,320(6), 345–350.
Google Scholar
Pfaff, C., Martin, T., & Ruf, I. (2015). Bony labyrinth morphometry indicates locomotor adaptations in the squirrel-related clade (Rodentia, Mammalia). Proceedings of the Royal Society B,282(1809), 20150744.
PubMed
Google Scholar
Pfaff, C., Czerny, S., Nagel, D., et al. (2017). Functional morphological adaptations of the bony labyrinth in marsupials (Mammalia, Theria). Journal of Morphology,278(6), 742–749.
PubMed
Google Scholar
Pigliucci, M. (2008). Is evolvability evolvable? Nature Reviews Genetics,9, 75–82.
CAS
PubMed
Google Scholar
Reichert, C. (1837) Über die Visceralbögen der Wirbeltiere im Allgemeinen und deren Metamorphose bei den Vögeln und Säugetieren. Archiv f. Anatomie, Physiologie und Wissensch. Medicin, 120–220.
Rich, T. H., Hopson, J. A., Musser, A. M., et al. (2005). Independent origins of middle ear bones in monotremes and therians. Science,307(5711), 910–914.
CAS
PubMed
Google Scholar
Riedl, R. J. (1978). Order in living organisms. New York: Wiley.
Google Scholar
Roberto, M. (1978). Quantitative evaluation of postnatal bone growth in the auditory ossicles of the dog. Annals of Otology, Rhinology & Laryngology,87(3), 370–379.
CAS
Google Scholar
Rosowski, J. J. (1992). Hearing in transitional mammals: Predictions from the middle-ear anatomy and hearing capabilities of extant mammals. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 615–631). New York: Springer.
Google Scholar
Schultz, J. A. (2020). Eat and listen—how chewing and hearing evolved. Science,367(6475), 244–246.
CAS
PubMed
Google Scholar
Sienknecht, U. J. (2013). Developmental origin and fate of middle ear structures. Hearing Research,301, 19–26.
PubMed
Google Scholar
Singleton, M. (2012). Postnatal cranial development in papionin primates: An alternative model for hominin evolutionary development. Evolutionary Biology,39, 499–520.
Google Scholar
Sipla, J. S. (2007). The semicircular canals of birds and non-avian theropod dinosaurs. PhD Thesis. Stony Brook University.
Spoor, F., Garland, T., Krovitz, G., et al. (2007). The primate semicircular canal system and locomotion. Proceedings of the National Academy of Sciences of the United States of America,104(26), 10808–10812.
CAS
PubMed
PubMed Central
Google Scholar
Spoor, F., & Zonneveld, F. (1998). Comparative review of the human bony labyrinth. Yearbook of Physical Anthropology,41, 211–251.
Google Scholar
Vasilopoulou-Kampitsi, M., Goyens, J., Baeckens, S., et al. (2019a). Habitat use and vestibular system’s dimensions in lacertid lizards. Journal of Anatomy,235(1), 1–14.
PubMed
Google Scholar
Vasilopoulou-Kampitsi, M., Goyens, J., Van Damme, R., et al. (2019b). The ecological signal on the shape of the lacertid vestibular system: Simple versus complex microhabitats. Biological Journal of the Linnean Society,127(2), 260–277.
Google Scholar
Wagner, A. (2005). Robustness and evolvability in living systems. Princeton, NJ: Princeton Univ. Press.
Google Scholar
Wagner, G. P., Pavlicev, M., & Cheverud, J. M. (2007). The road to modularity. Nature Reviews Genetics,8, 921–931.
CAS
PubMed
Google Scholar
Wagner, G. P., & Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution,50, 967–976.
PubMed
Google Scholar
Walsh, S. A., Barrett, P. M., Milner, A. C., et al. (2009). Inner ear anatomy is a proxy for deducing auditory capability and behaviour in reptiles and birds. Proceedings of the Royal Society B: Biological Sciences,276(1660), 1355–1360.
PubMed
Google Scholar
Wang, H., Meng, J., & Wang, Y. (2019). Cretaceous fossil reveals a new pattern in mammalian middle ear evolution. Nature,576(7785), 102–105.
CAS
PubMed
Google Scholar
Webster, D. B. (1966). Ear structure and function in modern mammals. American Zoologist,6, 451–466.
CAS
PubMed
Google Scholar
Wilkie, A. O., & Morriss-Kay, G. M. (2001). Genetics of craniofacial development and malformation. Nature Reviews Genetics,2, 458–468.
CAS
PubMed
Google Scholar
Yokoyama, T., Iino, Y., Kakizaki, K., & Murakami, Y. (1999). Human temporal bone study on the postnatal ossification process of auditory ossicles. The Laryngoscope,109(6), 927–930.
CAS
PubMed
Google Scholar