Skip to main content

Advertisement

Log in

Mitochondrial and Nuclear DNA Based Genetic Assessment Indicated Distinct Variation and Low Genetic Exchange Among the Three Subspecies of Swamp Deer (Rucervus duvaucelii)

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The swamp deer (Rucervus duvaucelii) occurs, primarily, in the wet grasslands of the Himalayan foothills as well as the dry grasslands of central India. Three subspecies have been identified, namely R. duvaucelii duvaucelii, R. duvaucelii branderi and R. duvaucelii ranjitsinhi. Degradation of grassland habitats led to a drastic decline in the total swamp deer population in the early 19th century. Even though the species has recently shown signs of recovery, it is still vulnerable to the small-population paradigm. Effective management plans need to be put in place to increase the population through scientific intervention. The current genetic variation within the three subspecies of R. duvaucelii is unclear, and this is hindering effective conservation planning. We examined the genetic variability, population structure and demography of the three subspecies of swamp deer using the mtDNA control region and microsatellite analysis. Despite the spatial isolation of the populations, we found a high level of variation and weak divergence among the subspecies. The genetic differentiation (F ST ) between the subspecies and the mismatch distribution of haplotypes indicated recent colonization by these subspecies. Population bottleneck analysis indicated that the existing subspecies and their populations are at demographic equilibrium and are stable. The study highlights the need for effective conservation management intervention to maintain the population size and genetic diversity. It also indicates that all the subspecies need to be managed as separate conservation units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balakrishnan, C. N., Monfort, S. L., Gaur, A., Singh, L., & Sorenson, M. D. (2003). Phylogeography and conservation genetics of Eld’s deer (Cervus eldi). Molecular Ecology, 12, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Bandelt, H. J., Forster, P., & Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology Evolution, 16, 37–48.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, M. D., Kappe, S. M., Keele, J. W., Stone, R. T., Sunden, S. L., Hawkins, G. A., et al. (1994). A linkage map for cattle. Genetics, 136, 619–639.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brander, A. (1923). Wild animal in Central India. London: Edward Arnold & Co.

    Google Scholar 

  • Buchanan, E. C., & Crawford, A. M. (1992). Ovine dinucleotide repeat polymorphism at the MAF70 locus. Animal Genetics, 23, 185.

    Article  CAS  PubMed  Google Scholar 

  • Cook, C. E., Wang, Y., & Sensabaugh, G. (1999). A mitochondrial control region and cytochrome bphylogeny of sika deer (Cervus nippon) and report of tandem repeats in the control region. Molecular Phylogentics Evolution, 12, 47–56.

    Article  CAS  Google Scholar 

  • Cornuet, J.-M., & Luikart, G. (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144, 2001–2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeWoody, J. A., Honeycutt, R. L., & Skow, L. C. (1995). Microssatellite markers in white-tailed deer. Journal of Heredity, 86, 317–319.

    Article  CAS  PubMed  Google Scholar 

  • Drummond, A. J., Suchard, M. A., Dong, X., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology Evolution, 29, 1969–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duckworth, J.W., Kumar, S.N., Pokheral, C.P., Baral, S.H. & Timmins, R.J. (2013). Rucervus duvaucelii. The IUCN red list of threatened species 2013: e.T4257A43590621. Downloaded on 14 September 2015.

  • Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359–361.

  • Eastern swamp deer population estimation. (2015). http://kaziranga.assam.gov.in/wp/eastern-swamp-deer-population-estimates-2015/. Accessed on 11 September 2015.

  • Ellenberg, J. R., & Morrison-Scot, T. C. S. (1951). Checklist of Palearctic and Indian mammals. London: British Museum (Natural History).

    Google Scholar 

  • Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 14, 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567.

    Article  PubMed  Google Scholar 

  • Feulner, P. G. D., Bielfeldt, W., Zachos, F. E., Bradvarovic, J., Eckert, I., et al. (2004). Mitochondrial DNA and microsatellite analyses of the genetic status of the presumed subspecies. Cervus elaphus montanus (Carpathian red deer). Heredity, 93, 299–306.

    Article  CAS  PubMed  Google Scholar 

  • Fu, Y. X. (1997). Statistical test of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert, C., Ropiquet, A., & Hassanin, A. (2006). Mitochondrial and nuclear phylogenies of Cervidae (Mammalia, Ruminantia): Systematics, morphology, and biogeography. Molecular Phylogentics Evolution, 40, 101–117.

    Article  CAS  Google Scholar 

  • Glaubitz, J. C. (2004). CONVERT: A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Molecular Ecology Notes, 4, 309–310.

  • Goudet, J. (1995). Fstat version 1.2: A computer program to calculate F-statistics. Journal of Heredity, 86, 485–486.

  • Groves, C. (1982). Geographic variation in the Barasingha or Swamp Deer (Cervus duvauceli). Journal of Bombay Natural History Society, 79, 620–629.

    Google Scholar 

  • Gupta, S. K., Kumar, A., & Hussain, S. A. (2013). Extraction of PCR-amplifiable DNA from a variety of biological samples with uniform success rate. Conservation Genetics Resources, 5, 215–217.

    Article  Google Scholar 

  • Gupta, S. K., Kumar, A., Gaur, A., & Hussain, S. A. (2015). Identification of 40 base pair insertion-deletion (INDEL) in mitochondrial control region among sambar (Rusa unicolor) populations. BMC Research Notes, 8, 581.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harpending, H. C., Sherry, S. T., Rogers, A. R., & Stoneking, M. (1993). Genetic structure of ancient human populations. Current Anthropology, 34, 483–496.

    Article  Google Scholar 

  • Jones, K. C., Levine, K. F., & Banks, J. D. (2002). Characterization of 11 polymorphic tetranucleotide microsatellites for forensic applications in California elk (Cervus elaphus canadensis). Molecular Ecology Notes, 2, 425–427.

    Article  CAS  Google Scholar 

  • Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16, 1099–1106.

    Article  PubMed  Google Scholar 

  • Khan, J.A. & Ahmed, K. (2004). Ecology and conservation of barasingha (Cervus duvauceli duvauceli) in northern India. Wildlife Society of India. Technical report no.16. https://www.conservationforce.org/pdf/barasingha%20Dudhwa.pdf. Accessed on 06 October 2015.

  • Kuehn, R., Schroeder, W., Pirchner, F., & Rottmann, O. (2003). Genetic diversity, gene flow and drift in Bavarian red deer populations (Cervus elaphus). Conservation Genetics, 4, 157–166.

    Article  CAS  Google Scholar 

  • Lee, Y. S., Markov, N., Voloshina, I., Argunov, A., Bayarlkhagva, D., et al. (2015). Genetic diversity and genetic structure of the Siberian roe deer (Capreolus pygargus) populations from Asia. BMC Genetics, 16, 100. doi:10.1186/s12863-015-0244-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Librado, P., & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 451–1452.

    Article  Google Scholar 

  • Marshall, T. C., Slate, J., Kruuk, L. E. B., & Pemberton, J. M. (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology, 7, 639–655.

    Article  CAS  PubMed  Google Scholar 

  • Moore, S. S., Barendse, W., Berger, K. T., Armitage, S. M., & Hetzel, D. J. S. (1992). Bovine and ovine DNA microsatellites from the EMBL and GenBank databases. Animal Genetics, 23, 463–467.

    Article  CAS  Google Scholar 

  • Mukesh., Kumar, V. P., Sharma, L. K., Shukla, M., & Sathyakumar, S. (2015). Pragmatic perspective on conservation genetics and demographic history of the last surviving population of Kashmir Red Deer (Cervus elaphus hanglu) in India. PLoS ONE, 10(2), e0117069.

  • Pitra, C., Fickel, J., Meijaard, E., & Groves, C. P. (2004). Evolution and phylogeny of old world deer. Molecular Phylogentics Evolution, 33, 880–895.

    Article  CAS  Google Scholar 

  • Poetsch, M., Seefeldt, S., Maschke, M., & Lignitz, E. (2001). Analysis of microsatellite polymorphism in red deer, roe deer, and fallow deer: Possible employment in forensic applications. Forensic Science International, 116, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Qureshi, Q., Sawarkar, V. B., Rahmani, A. R., & Mathur, P. K. (2004). Swamp Deer or Barasingha (Cervus duvauceli Cuvier, 1823). ENVIS Bulletin, 7, 181–192.

    Google Scholar 

  • Raymond, M., & Rousset, F. (1995). GENEPOP (version 1.2): Population genetics software for exact test and ecumenicism. Journal of Heredity, 86, 248–249.

  • Sankarnarayanan, P., Khalid, M., & Molur, S. (1995). Captive population modeling. In Q. Qureshi, V. P. Singh, R. Shankaran, U. S. Seal, S. Walker, & S. Molur (Eds.), Population habitat viability assessment workshop (P.H.V.A.) for Barasingha (Cervus duvaucelii). Coimbatore: Zoo Outreach Organization, CBSG.

    Google Scholar 

  • Schaller, G. (1967). The deer and the tiger. Chicago: University of Chicago Press.

    Google Scholar 

  • Schlötterer, C., Amos, B., & Tautz, D. (1991). Conservation of polymorphic simple sequence loci in cetacean species. Nature, 354, 63–65.

    Article  PubMed  Google Scholar 

  • Tajima, F. (1989). Statistical methods for testing the neutral mutation hypothesis for DNA polymorphism. Genetics, 123, 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology Evolution, 30, 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tóth, G., Gáspári, Z., & Jurka, J. (2000). Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Research, 10, 967–981.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaiman, D., Osta, R., Mercier, D., Grohs, C., & Leveziel, H. (1992). Characterization of five new bovine dinucleotide repeats. Animal Genetics, 23, 537–541.

    Article  CAS  PubMed  Google Scholar 

  • Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the analysis of population structure. Evolution, 38, 1358–1370.

Download references

Acknowledgments

This study was supported by the Government of India’s (Department of Science and Technology) Science and Engineering Research Board (SERB)-sponsored projects SR/SO/AS-077/2013 and SR/S0/AS-029/2012 and Wildlife Institute of India (WII). The forest departments of the states of Andhra Pradesh, Assam, Madhya Pradesh, Uttar Pradesh and Uttarakhand are acknowledged for granting permission to collect biological samples. The help and support provided by the Director, WII and the Dean, WII and Dr. Y.V. Jhala, Scientist G at WII, are acknowledged. The authors thank Dr. Pranab Pal, FTO, WII for field support and the two anonymous referees for constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

Supplementary Figure 1: Mismatch pairwise distribution graphs for swamp deer populations. The X axis shows number of pairwise differences and the Y axis shows frequency of pairwise comparisons. The expected and observed frequencies of mismatch distribution were represented in solid and dotted line, respectively. Graph A is for the all populations; B = DNP population; C = JJCR population; D = captive populations of LZG and SVZP; E = KTR population, and F = KZNP population. (JPEG 309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Ghazi, M.G.U., Hussain, S.A. et al. Mitochondrial and Nuclear DNA Based Genetic Assessment Indicated Distinct Variation and Low Genetic Exchange Among the Three Subspecies of Swamp Deer (Rucervus duvaucelii). Evol Biol 44, 31–42 (2017). https://doi.org/10.1007/s11692-016-9387-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-016-9387-2

Keywords

Navigation