Advertisement

Evolutionary Biology

, Volume 41, Issue 1, pp 1–11 | Cite as

Diurnality and Nocturnality in Primates: An Analysis from the Rod Photoreceptor Nuclei Perspective

  • Boris Joffe
  • Leo Peichl
  • Anita Hendrickson
  • Heinrich Leonhardt
  • Irina Solovei
Research Article

Abstract

Diurnality, associated with enhanced visual acuity and color vision, is typical of most modern Primates. However, it remains a matter of debate when and how many times primates re-acquired diurnality or returned to nocturnality. We analyzed the features specific to nocturnal and diurnal vision that were recently found in the nuclei of mammalian rod photoreceptor cells in 11 species representing various groups of the Primates and related tree shrew and colugo. In particular, heterochromatin in rod nuclei of nocturnal mammals is clustered in the center of rod nuclei (inverted architecture), whereas rods of diurnal mammals retain rods with peripheral heterochromatin (conventional architecture). Rod nuclei of the nocturnal owl monkey have a state transitional to the inverted one. Surprisingly, rod nuclei of the tarsier have a conventional nuclear architecture typical for diurnal mammals, strongly implying that recent Tarsiiformes returned to nocturnality from the diurnal state. Diurnal lemurs retain inverted rod nuclei typical of nocturnal mammals, which conforms to the notion that the ancestors of all Lemuroidea were nocturnal. Data on the expression of proteins indispensable for peripheral heterochromatin maintenance (and, respectively, conventional or inverted nuclear organization) in rod cells support the view that the primate ancestors were nocturnal and transition to diurnality occurred independently in several primate and related groups: Tupaia, diurnal lemurs, and, at least partially independently, in Simiiformes (monkeys and apes) and Tarsiiformes.

Keywords

Primates Rod photoreceptor cell nuclei Heterochromatin Nocturnal vision Diurnal vision 

Notes

Acknowledgments

We are grateful to all colleagues who supplied us with retina samples, to Stefan Müller (LMU, Munich) for a discussion of the Aotus karyotype, and to an anonymous reviewer for very helpful comments. The study was supported by the DFG (JO903/1 to BJ, SFB/TR5 to HL and SO1054/1 to IS).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Acosta, M. L., Bumsted O’Brien, K. M., Tan, S. S., & Kalloniatis, M. (2008). Emergence of cellular markers and functional ionotropic glutamate receptors on tangentially dispersed cells in the developing mouse retina. The Journal of Comparative Neurology, 506, 506–523.PubMedCrossRefGoogle Scholar
  2. Ankel-Simons, F., & Rasmussen, D. T. (2008). Diurnality, nocturnality, and the evolution of primate visual systems. American Journal of Physical Anthropology, Suppl 47, 100–117.PubMedCrossRefGoogle Scholar
  3. Baylor, D. A., Lamb, T. D., & Yau, K. W. (1979). Responses of retinal rods to single photons. Journal of Physiology, 288, 613–634.PubMedGoogle Scholar
  4. Chaimanee, Y., Lebrun, R., Yamee, C., & Jaeger, J. J. (2011). A new Middle Miocene tarsier from Thailand and the reconstruction of its orbital morphology using a geometric-morphometric method. Proceedings of the Royal Society B—Biological Sciences, 278, 1956–1963.PubMedCentralCrossRefGoogle Scholar
  5. Collins, C. E., Hendrickson, A., & Kaas, J. H. (2005). Overview of the visual system of Tarsius. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 287, 1013–1025.PubMedCrossRefGoogle Scholar
  6. Cone, R. A. (1972). Rotational diffusion of rhodopsin in the visual receptor membrane. Nature: New Biology, 236, 39–43.Google Scholar
  7. Davies, W. I., Collin, S. P., & Hunt, D. M. (2012). Molecular ecology and adaptation of visual photopigments in craniates. Molecular Ecology, 21, 3121–3158.PubMedCrossRefGoogle Scholar
  8. Donati, G., Santini, L., Razafindramanana, J., Boitani, L., & Borgognini-Tarli, S. (2013). (Un-)expected nocturnal activity in “Diurnal” Lemur catta supports cathemerality as one of the key adaptations of the lemurid radiation. American Journal of Physical Anthropology, 150, 99–106.PubMedCrossRefGoogle Scholar
  9. Eberhart, A., Kimura, H., Leonhardt, H., Joffe, B., & Solovei, I. (2012). Reliable detection of epigenetic histone marks and nuclear proteins in tissue cryosections. Chromosome Research, 20, 849–858.PubMedCrossRefGoogle Scholar
  10. Fernandez-Duque, E., de la Iglesia, H., & Erkert, H. G. (2010). Moonstruck primates: owl monkeys (Aotus) need moonlight for nocturnal activity in their natural environment. PLoS One, 5, e12572.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Finotelo, L. F., Amaral, P. J., Pieczarka, J. C., de Oliveira, E. H., Pissinati, A., Neusser, M., et al. (2010). Chromosome phylogeny of the subfamily Pitheciinae (Platyrrhini, Primates) by classic cytogenetics and chromosome painting. BMC Evolutionary Biology, 10, 189.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Gursky, S. (2003). Lunar philia in a nocturnal primate. International Journal of Primatology, 24, 351–356.CrossRefGoogle Scholar
  13. Hall, M. I., Kamilar, J. M., & Kirk, E. C. (2012). Eye shape and the nocturnal bottleneck of mammals. Proceedings of the Royal Society B—Biological Sciences, 279, 4962–4968.PubMedCentralCrossRefGoogle Scholar
  14. Heesy, C. P., & Hall, M. I. (2010). The nocturnal bottleneck and the evolution of mammalian vision. Brain, Behavior and Evolution, 75, 195–203.PubMedCrossRefGoogle Scholar
  15. Hendrickson, A., Djajadi, H. R., Nakamura, L., Possin, D. E., & Sajuthi, D. (2000). Nocturnal tarsier retina has both short and long/medium-wavelength cones in an unusual topography. The Journal of Comparative Neurology, 424, 718–730.PubMedCrossRefGoogle Scholar
  16. Hiwatashi, T., Okabe, Y., Tsutsui, T., Hiramatsu, C., Melin, A. D., Oota, H., et al. (2010). An explicit signature of balancing selection for color-vision variation in new world monkeys. Molecular Biology and Evolution, 27, 453–464.PubMedCrossRefGoogle Scholar
  17. Jacobs, G. H. (2008). Primate color vision: A comparative perspective. Visual Neuroscience, 25, 619–633.PubMedCrossRefGoogle Scholar
  18. Jacobs, G. H. (2013). Losses of functional opsin genes, short-wavelength cone photopigments, and color vision—A significant trend in the evolution of mammalian vision. Visual Neuroscience, 30, 39–53.PubMedCrossRefGoogle Scholar
  19. Jacobs, G. H., & Deegan, J. F., 2nd. (2005). Polymorphic New World monkeys with more than three M/L cone types. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 22, 2072–2080.PubMedCrossRefGoogle Scholar
  20. Jacobs, G. H., Neitz, M., & Neitz, J. (1996). Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate. Proceedings of the Royal Society B—Biological Sciences, 263, 705–710.CrossRefGoogle Scholar
  21. Jacobs, G. H., Williams, G. A., Cahill, H., & Nathans, J. (2007). Emergence of novel color vision in mice engineered to express a human cone photopigment. Science, 315, 1723–1725.PubMedCrossRefGoogle Scholar
  22. Kay, R. F., & Kirk, E. C. (2000). Osteological evidence for the evolution of activity pattern and visual acuity in primates. American Journal of Physical Anthropology, 113, 235–262.PubMedCrossRefGoogle Scholar
  23. Knabe, W., Skatchkov, S., & Kuhn, H. J. (1997). “Lens mitochondria” in the retinal cones of the tree-shrew Tupaia belangeri. Vision Research, 37, 267–271.PubMedCrossRefGoogle Scholar
  24. Levenson, D. H., Fernandez-Duque, E., Evans, S., & Jacobs, G. H. (2007). Mutational changes in S-cone opsin genes common to both nocturnal and cathemeral Aotus monkeys. American Journal of Primatology, 69, 757–765.PubMedCrossRefGoogle Scholar
  25. Martin, R. D., & Ross, C. F. (2005). The evolutionary and ecological context of primate vision. In J. Kremers (Ed.), The primate visual system: A comparative approach (pp. 1–36). Chichester: John Wiley and Sons.Google Scholar
  26. Melin, A. D., Matsushita, Y., Moritz, G. L., Dominy, N. J., & Kawamura, S. (2013). Inferred L/M cone opsin polymorphism of ancestral tarsiers sheds dim light on the origin of anthropoid primates. Proceedings of the Royal Society B—Biological Sciences, 280, 20130189.CrossRefGoogle Scholar
  27. Menezes, A. N., Bonvicino, C. R., & Seuanez, H. N. (2010). Identification, classification and evolution of owl monkeys (Aotus, Illiger 1811). BMC Evolutionary Biology, 10, 248.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Moritz, G. L., Lim, N. T.-L., Netz, M., Peichl, L., & Dominy, N. J. (2013). Expression and evolution of short wavelength sensitive opsins in colugos: A nocturnal lineage that informs debate on primate origins. Evolutionary Biology. doi: 10.1007/s11692-013-9230-y.
  29. Müller, B., Glösmann, M., Peichl, L., Knop, G. C., Hagemann, C., & Ammermüller, J. (2009). Bat eyes have ultraviolet-sensitive cone photoreceptors. PLoS One, 4, e6390.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Müller, B., Goodman, S. M., & Peichl, L. (2007). Cone photoreceptor diversity in the retinas of fruit bats (megachiroptera). Brain, Behavior and Evolution, 70, 90–104.PubMedCrossRefGoogle Scholar
  31. Nieves, M., De Oliveira, E. H., Amaral, P. J., Nagamachi, C. Y., Pieczarka, J. C., Muhlmann, M. C., et al. (2011). Analysis of the heterochromatin of Cebus (Primates, Platyrrhini) by micro-FISH and banding pattern comparisons. Journal of Genetics, 90, 111–117.PubMedCrossRefGoogle Scholar
  32. Perelman, P., Johnson, W. E., Roos, C., Seuanez, H. N., Horvath, J. E., Moreira, M. A., et al. (2011). A molecular phylogeny of living primates. PLoS Genetics, 7, e1001342.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Pieczarka, J. C., Nagamachi, C. Y., Muniz, J. A., Barros, R. M., & Mattevi, M. S. (1998). Analysis of constitutive heterochromatin of Aotus (Cebidae, Primates) by restriction enzyme and fluorochrome bands. Chromosome Research, 6, 77–83.PubMedCrossRefGoogle Scholar
  34. Prakhongcheep, O., Hirai, Y., Hara, T., Srikulnath, K., Hirai, H., & Koga, A. (2013). Two types of alpha satellite DNA in distinct chromosomal locations in Azara’s Owl Monkey. DNA Research. doi: 10.1093/dnares/dst004.
  35. Renne, P. R., Deino, A. L., Hilgen, F. J., Kuiper, K. F., Mark, D. F., Mitchell, W. S., 3rd, et al. (2013). Time scales of critical events around the Cretaceous-Paleogene boundary. Science, 339, 684–687.PubMedCrossRefGoogle Scholar
  36. Rossie, J. B., Ni, X., & Beard, K. C. (2006). Cranial remains of an Eocene tarsier. Proceedings of the National Academy of Sciences of the United States of America, 103, 4381–4385.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Solovei, I., Kreysing, M., Lanctot, C., Kösem, S., Peichl, L., Cremer, T., et al. (2009). Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell, 137, 356–368.PubMedCrossRefGoogle Scholar
  38. Solovei, I., Wang, A. S., Thanisch, K., Schmidt, C. S., Krebs, S., Zwerger, M., et al. (2013). LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell, 152, 584–598.PubMedCrossRefGoogle Scholar
  39. Talebi, M. G., Pope, T. R., Vogel, E. R., Neitz, M., & Dominy, N. J. (2006). Polymorphism of visual pigment genes in the muriqui (Primates, Atelidae). Molecular Ecology, 15, 551–558.PubMedCrossRefGoogle Scholar
  40. Tan, Y., Yoder, A. D., Yamashita, N., & Li, W. H. (2005). Evidence from opsin genes rejects nocturnality in ancestral primates. Proceedings of the National Academy of Sciences of the United States of America, 102, 14712–14716.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Tattersall, I. (2006). Origin of the Malagasy strepsirrhine primates. In L. Gould & M. L. Sauther (Eds.), Lemurs: Ecology and adaptation (pp. 3–17). New York: Springer.Google Scholar
  42. Torres, O. M., Enciso, S., Ruiz, F., Silva, E., & Yunis, I. (1998). Chromosome diversity of the genus Aotus from Colombia. American Journal of Primatology, 44, 255–275.PubMedCrossRefGoogle Scholar
  43. van Oosterhout, F., Fisher, S. P., van Diepen, H. C., Watson, T. S., Houben, T., VanderLeest, H. T., et al. (2012). Ultraviolet light provides a major input to non-image-forming light detection in mice. Current Biology, 22, 1397–1402.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Warrant, E. (2004). Vision in the dimmest habitats on earth. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 190, 765–789.PubMedCrossRefGoogle Scholar
  45. Wässle, H. (2004). Parallel processing in the mammalian retina. Nature Reviews Neuroscience, 5, 747–757.PubMedCrossRefGoogle Scholar
  46. Wildman, D. E., Jameson, N. M., Opazo, J. C., & Yi, S. V. (2009). A fully resolved genus level phylogeny of neotropical primates (Platyrrhini). Molecular Phylogenetics and Evolution, 53, 694–702.PubMedCrossRefGoogle Scholar
  47. Williams, B. A., Kay, R. F., & Kirk, E. C. (2010). New perspectives on anthropoid origins. Proceedings of the National Academy of Sciences of the United States of America, 107, 4797–4804.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Zhao, H., Rossiter, S. J., Teeling, E. C., Li, C., Cotton, J. A., & Zhang, S. (2009). The evolution of color vision in nocturnal mammals. Proceedings of the National Academy of Sciences of the United States of America, 106, 8980–8985.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Boris Joffe
    • 1
  • Leo Peichl
    • 2
  • Anita Hendrickson
    • 3
  • Heinrich Leonhardt
    • 1
  • Irina Solovei
    • 1
  1. 1.Department of Biology II, Center for Integrated Protein Science Munich (CIPSM)Ludwig-Maximilians University MunichPlanegg-MartinsriedGermany
  2. 2.Max Planck Institute for Brain ResearchFrankfurt am MainGermany
  3. 3.Department of OphthalmologyUniversity of Washington Medical SchoolSeattleUSA

Personalised recommendations