Skip to main content
Log in

Just How Much is the G-matrix Actually Constraining Adaptation?

  • Essay
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The genetic variance–covariance matrix (G) has long been considered to summarize the genetic constraints biasing evolution in its early stages, although in some instances, G can enhance divergence and facilitate adaptation. However, the effects of G on the response to selection might be of less importance than previously thought. In addition, it has been suggested that selection itself, under certain conditions, might rapidly alter the genetic covariance structure. If selection can indeed affect the stability of G to facilitate evolution, the overall structure of G might not be as important to consider as the past selective conditions that G was subject to. Thus, more empirical work is needed on the stability of G in the early stages of divergence before one can really assess to what extent G constrains evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrawal, A. F., & Stinchcombe, J. R. (2009). How much do genetic covariances alter the rate of adaptation? Proceedings of the Royal Society of London Series B, 276, 1183–1191.

    Article  PubMed  Google Scholar 

  • Arnold, S. J., Burger, R., Holenhole, P. A., Beverley, C. A., & Jones, A. G. (2008). Understanding the evolution and stability of the G-matrix. Evolution, 62, 2451–2461.

    Article  PubMed  Google Scholar 

  • Arnold, S. J., Pfrender, M. E., & Jones, A. G. (2001). The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica, 112–113, 9–32.

    Article  PubMed  Google Scholar 

  • Arthur, W. (2004). The effect of development on the direction of evolution: Toward a twenty-first century consensus. Evolution and Development, 6, 282–288.

    Article  PubMed  Google Scholar 

  • Cano, J. M., Laurila, A., Palo, J., & Merila, J. (2004). Population differentiation in G matrix structure due to natural selection in Rana temporaria. Evolution, 58, 2013–2020.

    Article  PubMed  Google Scholar 

  • Cheverud, J. M. (1984). Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology, 110, 155–172.

    Article  PubMed  CAS  Google Scholar 

  • Doroszuk, A., Wojewodzic, M. W., Gort, G., & Kammenga, J. E. (2008). Rapid divergence of genetic variance-covariance matrix within a natural population. American Naturalist, 171, 291–304.

    Article  PubMed  Google Scholar 

  • Dudley, S. A. (1996). The response to selection on plant physiological traits: Evidence for local adaptation. Evolution, 50, 103–110.

    Article  Google Scholar 

  • Eroukhmanoff, F., Hargeby, A., Arnberg, N. N., Hellgren, O., Bensch, S., & Svensson, E. I. (2009a). Parallelism and historical contingency during rapid ecotype divergence in an isopod. Journal of Evolutionary Biology, 22, 1098–1110.

    Article  Google Scholar 

  • Eroukhmanoff, F., Outomuro, D., Ocharan, F. J., & Svensson, E. I. (2009b). Patterns of divergence in the wing covariance structure of calopterygid damselflies. Evolutionary Biology, 36, 214–224.

    Article  Google Scholar 

  • Eroukhmanoff, F., & Svensson, E. I. (2008). Phenotypic integration and conserved covariance structure in calopterygid damselflies. Journal of Evolutionary Biology, 21, 514–526.

    Article  PubMed  CAS  Google Scholar 

  • Gerhart, J., & Kirschner, M. (2007). The theory of facilitated variation. Proceedings of the National Academy of Sciences USA, 104, 8582–8589.

    Article  CAS  Google Scholar 

  • Gould, S. J. (1989). A developmental constraint in Cerion, with comments on the definition and interpretation of constraint in evolution. Evolution, 43, 516–539.

    Article  Google Scholar 

  • Hohenlohe, P. A., & Arnold, S. J. (2008). MIPoD: A hypothesis-testing framework for microevolutionary inference from patterns of divergence. American Naturalist, 171, 366–385.

    Article  PubMed  Google Scholar 

  • Irschick, D. J., Vitt, L. J., Zani, P. A., & Losos, J. B. (1997). A comparison of evolutionary radiations in mainland and caribbean Anolis lizards. Ecology, 78, 2191–2203.

    Google Scholar 

  • Jamniczky, H. A., & Hallgrimsson, B. (2009). A comparison of covariance structure of wild and laboratory muroid crania. Evolution. doi: 10.1111/j.1558-5646.2009.00651.x..

  • Jones, A. G., Arnold, S. J., & Borger, R. (2003). Stability of the G-matrix in a population experiencing pleiotropic mutation, stabilizing selection, and genetic drift. Evolution, 57, 1747–1760.

    PubMed  Google Scholar 

  • Jones, A. G., Arnold, S. J., & Borger, R. (2004). Evolution of the G-matrix on a landscape with a moving optimum. Evolution, 58, 1639–1654.

    PubMed  Google Scholar 

  • Lande, R. (1979). Quantitative genetics analysis of multivariate evolution, applied to brain: Body size allometry. Evolution, 33, 402–416.

    Article  Google Scholar 

  • Mc Guigan, K. (2005). Phenotypic divergence along lines of genetic variance. American Naturalist, 172, 194–202.

    Google Scholar 

  • Mc Guigan, K. (2006). Studying evolution using multivariate quantitative genetics. Molecular Ecology, 15, 883–896.

    Article  CAS  Google Scholar 

  • Merila, J., & Björklund, M. (1999). Population divergence and morphometric integration in the greenfinch (Carduelis chloris) - evolution against the trajectory of least resistance? Journal of Evolutionary Biology, 12, 103–112.

    Article  Google Scholar 

  • Parter, M., Kashtan, N., & Alon, U. (2008). Facilitated variation: How evolution learns from past environments to generalize to new environments. PLOS Computational Biology, 4, e10000206.

    Article  CAS  Google Scholar 

  • Phillips, P. C., & Arnold, S. J. (1999). Hierarchical comparison of genetic variance-covariance matrices. I. Using the Flury hierarchy. Evolution, 53, 1506–1515.

    Article  Google Scholar 

  • Phillips, P. C., Whitlock, M. C., & Fowler, K. (2001). Inbreeding changes the shape of the genetic covariance matrix in Drosophila melanogaster. Genetics, 158, 1137–1145.

    PubMed  CAS  Google Scholar 

  • Polly, P. D. (2008). Developmental dynamics and G-matrices: Can morphometric spaces be used to model phenotypic evolution? Evolutionary Biology, 35, 83–96.

    Article  Google Scholar 

  • Revell, L. J. (2007). The G-matrix under fluctuating correlational mutation and selection. Evolution, 61, 1857–1872.

    Article  PubMed  Google Scholar 

  • Revell, L. J., Harmon, L. J., Langerhans, R. B., & Kolbe, J. J. (2007). A phylogenetic approach to determining the importance of constraint on phenotypic evolution in the neotropical lizard, Anolis cristatellus. Evolutionary Ecology Research, 9, 261–282.

    Google Scholar 

  • Schluter, D. (1996). Adaptive radiation along genetic lines of least resistance. Evolution, 50, 1766–1774.

    Article  Google Scholar 

  • Schluter, D., Clifford, E. A., Nemethy, M., & McKinnon, J. S. (2004). Parallel evolution and inheritance of quantitative traits. American Naturalist, 163, 809–822.

    Article  PubMed  Google Scholar 

  • Shaw, F. H., Shaw, R. G., Wilkinson, G. S., & Turelli, M. (1995). Changes in genetic covariances and covariances: G whiz! Evolution, 49, 1260–1267.

    Article  Google Scholar 

  • Steppan, S. J., Phillips, P. C., & Houle, D. (2002). Comparative quantitative genetics: Evolution of the G matrix. Trends in Ecology & Evolution, 17, 320–327.

    Article  Google Scholar 

  • Teotonio, H., Chelo, I. M., Bradic, M., Rose, M. R., & Long, A. D. (2009). Experimental evolution reveals natural selection on standing genetic variation. Nature Genetics, 41, 251–257.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, G. S., Fowler, K., & Partridge, L. (1990). Resistance of genetic correlation structure to directional selection in Drosophila melanogaster. Evolution, 44, 1990–2003.

    Article  Google Scholar 

Download references

Acknowledgements

I thank Erik Svensson’s laboratory group for many intense discussions on issues related to the G-matrix, which have helped me clarifying some of the points treated here. This study was financially supported by the Ecole Normale Supérieure (ENS) and the Royal Physiographic Society of Lund (KFS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Eroukhmanoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eroukhmanoff, F. Just How Much is the G-matrix Actually Constraining Adaptation?. Evol Biol 36, 323–326 (2009). https://doi.org/10.1007/s11692-009-9062-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-009-9062-y

Keywords

Navigation