Skip to main content
Log in

Evolutionary Origins of the Neural Crest and Neural Crest Cells

  • Synthesis
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

I evaluate the lines of evidence—cell types, genes, gene pathways, fossils—in putative chordate ancestors—cephalochordates and ascidians—pertaining to the evolutionary origin of the vertebrate neural crest. Given the intimate relationship between the neural crest and the dorsal nervous system during development, I discuss the dorsal nervous system in living (extant) members of the two groups, especially the nature, and genes, and gene regulatory networks of the brain to determine whether any cellular and/or molecular precursors (latent homologues) of the neural may have been present in ancestral cephalochordates or urochordates. I then examine those fossils that have been interpreted as basal chordates or cephalochordates to determine whether they shed any light on the origins of neural crest cell (NCC) derivatives. Do they have, for example, elements of a head skeleton or pharyngeal arches, two fundamental vertebrate characters (synapomorphies)? The third topic recognizes that the origin of the neural crest in the first vertebrates accompanied the evolution of a brain, a muscular pharynx, and paired sensory organs. In a paradigm-breaking hypothesis—often known as the ‘new head hypothesis’—Carl Gans and Glen Northcutt linked these evolutionary innovations to the evolution of the neural crest and ectodermal placodes (Gans and Northcutt Science 220:268-274, 1983. doi:10.1126/science.220.4594.268; Northcutt and Gans The Quarterly Review of Biology 58:1–28, 1983. doi:10.1086/413055). I outline the rationale behind the new head hypothesis before turning to an examination of the pivotal role played by NCCs in the evolution of pharyngeal arches, in the context of the craniofacial skeleton. Integrations between the evolving vertebrate brain, muscular pharynx and paired sensory organs may have necessitated that the pharyngeal arch skeletal system—and subsequently, the skeleton of the jaws and much of the skull (the first vertebrates being jawless)—evolved from NCCs whose developmental connections were to neural ectoderm and neurons rather than to mesoderm and connective tissue; mesoderm produces much of the vertebrate skeleton, including virtually all the skeleton outside the head. The origination of the pharyngeal arch skeleton raises the issue of the group of organisms in which and how cartilage arose as a skeletal tissue. Did cartilage arise in the basal proto-vertebrate from a single germ layer, cell layer or tissue, or were cells and/or genes co-opted from several layers or tissues? Two recent studies utilizing comparative genomics, bioinformatics, molecular fingerprinting, genetic labeling/cell selection, and GeneChip Microarray technologies are introduced as powerful ways to approach the questions that are central to this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. As this review deals with the origination rather than the evolution of diversification and specialization of neural crest cells, I do not discuss the evidence for neural crest cells and their derivatives in lampreys and hagfishes, nor do I discuss the phylogenetic relationships between lampreys and hagfishes. For entrees into the literatiure on these topics, see Kuratani et al. (2002), Meulemans and Bronner-Fraser (2002), Janvier (2007), Ota and Kuratani 2006, 2007, and Ota et al. (2007).

  2. For many years, Col2a1 has been regarded as the “cartilage collagen gene”. However, we will see that Col2a1 is expressed in the notochord and in endodermal cells. Furthermore, many NCCs express Col2a1, often in combination with genes such as Sox9, Sox10, and LSox5, which activate the collagen gene. So general is this combination of gene expressions that Suzuki et al. (2006)) concluded that Col2a1 is a “general mesenchyme gene.”.

References

  • Baker, C. V. H., & Bronner-Fraser, M. (1997). The origins of the neural crest. Part II: An evolutionary perspective. Mechanisms of Development, 69, 13–29. doi:10.1016/S0925-4773(97)00129-9.

    PubMed  CAS  Google Scholar 

  • Basch, M. L., Bronner-Fraser, M., & Garcia-Castro, M. I. (2006). Specification of the neural crest occurs during gastrulation requires Pax7. Nature, 441, 218–222. doi:10.1038/nature04684.

    PubMed  CAS  Google Scholar 

  • Bhattacherjee, V., Mukhopadhyay, P., Singh, S., Johnson, C., et al. (2007). Neural crest and mesoderm lineage-dependent gene expression in orofacial development. Differentiation, 75, 463–477. doi:10.1111/j.1432-0436.2006.00145.x.

    PubMed  CAS  Google Scholar 

  • Bourlat, S. J., Juliusdottir, T., Lowe, C. J., Freeman, R., et al. (2006). Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature, 444, 85–88. doi:10.1038/nature05241.

    PubMed  CAS  Google Scholar 

  • Cañestroa, C., & Postlethwait, J. H. (2007). Development of a chordate anterior-posterior axis without classical retinoic acid signaling. Developmental Biology, 305, 522–538. doi:10.1016/j.ydbio.2007.02.032.

    Google Scholar 

  • Chen, J.-Y., Huang, D.-Y., & Li, C.-W. (1999). An early Cambrian craniate-like chordate. Nature, 402, 518–522. doi:10.1038/990080.

    CAS  Google Scholar 

  • Cohn, M. J. (2002). Lamprey Hox genes and the origin of jaws. Nature, 416, 386–387. doi:10.1038/416386a.

    PubMed  CAS  Google Scholar 

  • Cole, A. G., & Hall, B. K. (2004a). Cartilage is a metazoan tissue; integrating data from non-vertebrate sources. Acta Zoologica (Stockholm), 85, 69–80.

    Google Scholar 

  • Cole, A. G., & Hall, B. K. (2004b). The nature and significance of invertebrate cartilages revisited: Distribution and histology of cartilage and cartilage-like tissues within the Metazoa. Zoology (Jena, Germany), 107, 261–274. doi:10.1016/j.zool.2004.05.001.

    Google Scholar 

  • Cole, A. G., & Hall, B. K. (2008). Cartilage differentiation in cephalopod molluscs. Zoology (Jena, Germany), in press.

  • Corbo, J. C., Erives, A., DiGregorio, A., Chang, A., & Levine, M. (1997). Dorsoventral patterning of the vertebrate neural tube is conserved in a protochordate. Development, 124, 2335–2344.

    PubMed  CAS  Google Scholar 

  • Dehal, P., Satou, Y., Campbell, R. K., Chapman, J., et al. (2002). The draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins. Science, 298, 2157–2167. doi:10.1126/science.1080049.

    PubMed  CAS  Google Scholar 

  • Delsuc, F., Brinkmann, H., Chourrout, D., & Philippe, H. (2006). Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature, 439, 965–968. doi:10.1038/nature04336.

    PubMed  CAS  Google Scholar 

  • Donoghue, P. C. J. (2002). Evolution of development of the vertebrate dermal and oral skeletons: Unraveling concepts, regulatory theories, and homologies. Paleobiology, 28, 474–507. doi :10.1666/0094-8373(2002)028<0474:EODOTV>2.0.CO;2.

    Google Scholar 

  • Dufour, H. D., Chettouh, Z., Deyts, C., De Rosa, R., et al. (2006). Precraniate origin of cranial motoneurons. Proceedings of the National Academy of Sciences of the United States of America, 103, 8727–8732. doi:10.1073/pnas.0600805103.

    PubMed  CAS  Google Scholar 

  • Ellies, D. L., Langille, R. M., Martin, C. C., Akimenko, M.-A., & Ekker, M. (1997). Specific craniofacial cartilage dysmorphogenesis coincides with a loss of Dlx gene expression in retinoic acid-treated zebrafish embryos. Mechanisms of Development, 61, 23–36. doi:10.1016/S0925-4773(96)00616-8.

    PubMed  CAS  Google Scholar 

  • Ericsson, R., Cerni, R., Falck, P., & Olsson, L. (2004). Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl, Ambystoma mexicanum. Developmental Dynamics, 231, 237–247. doi:10.1002/dvdy.20127.

    PubMed  Google Scholar 

  • Escriva, H., Holland, N. D., Gronemeyer, H., Laudet, V., & Holland, L. Z. (2002). The retinoic acid signaling pathway regulates anterior/posterior patterning in the nerve cord and pharynx of amphioxus, a chordate lacking neural crest. Development, 129, 2905–2916.

    PubMed  CAS  Google Scholar 

  • Fritzsch, B., & Northcutt, R. G. (1993). Cranial and spinal nerve organization in amphioxus and lampreys: Evidence for an ancestral craniate pattern. Acta Anatomica, 148, 96–109. doi:10.1159/000147529.

    PubMed  CAS  Google Scholar 

  • Gans, C., & Northcutt, R. G. (1983). Neural crest and the origin of vertebrates: A new head. Science, 220, 268–274. doi:10.1126/science.220.4594.268.

    PubMed  Google Scholar 

  • Gans, C., & Northcutt, R. G. (1985). Neural crest: The implications for comparative anatomy. Fortschritte der Zoologie, 30, 507–514.

    Google Scholar 

  • Gass, G., & Hall, B. K. (2007). Collectivity in context: Modularity, cell sociology, and the neural crest. Biological Theory, 2, 1–11. doi:10.1162/biot.2007.2.4.349.

    Google Scholar 

  • Gavalas, A., Trainor, P., Ariza-McNaughton, L., & Krumlauf, R. (2001). Synergy between Hoxa1 and Hoxb1: The relationship between arch patterning and the generation of cranial neural crest. Development, 128, 3017–3027.

    PubMed  CAS  Google Scholar 

  • Goodrich, E. S. (1930). Studies on the structure and development of vertebrates. London: Macmillan & Co. Reprinted, 1958, New York: Dover Publications, Inc.; 1986, Chicago: The University of Chicago Press.

  • Graham, A., & Smith, A. (2001). Patterning the pharyngeal arches. BioEssays, 23, 54–61. doi :10.1002/1521-1878(200101)23:1<54::AID-BIES1007>3.0.CO;2-5.

    PubMed  CAS  Google Scholar 

  • Grandel, H., Lun, K., Rauch, G.-J., Rhinn, M., et al. (2002). Retinoic acid signalling in the zebrafish embryo is necessary during pre-segmentation stages to pattern the anterior-posterior axis of the CNS and to induce a pectoral fin bud. Development, 129, 2851–2865.

    PubMed  CAS  Google Scholar 

  • Hall, B. K. (1999a). The neural crest in development and evolution. New York: Springer.

    Google Scholar 

  • Hall, B. K. (1999b). Evolutionary developmental biology (2nd ed.). Dordrecht, Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Hall, B. K. (2000). A role for epithelial-mesenchymal interactions in tail growth/morphogenesis and chondrogenesis in embryonic mice. Cells, Tissues, Organs, 166, 6–14. doi:10.1159/000016703.

    PubMed  CAS  Google Scholar 

  • Hall, B. K. (2004). Descent with modification: The unity underlying homology and homoplasy as seen through an analysis of development and evolution. Biological Reviews of the Cambridge Philosophical Society, 78, 409–433. doi:10.1017/S1464793102006097.

    Google Scholar 

  • Hall, B. K. (2005a). Consideration of the neural crest and its skeletal derivatives in the context of novelty/innovations. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution, 304B, 548–557.

    Google Scholar 

  • Hall, B. K. (2005b). Bone and cartilage: Developmental and evolutionary skeletal biology. London: Elsevier Academic Press.

    Google Scholar 

  • Hall, B. K. (2008a). The neural crest and neural crest cells in vertebrate development and evolution. New York: Springer, in press.

  • Hall, B. K. (2008b). Vertebrate origins: Riding the crest of a new wave, or the wave of a new crest? Evolution & Development, 10, 261–263.

    Google Scholar 

  • Hall, B. K. (2008c). The neural crest and neural crest cells: Discovery and significance. Journal of Biosciences, submitted.

  • Hall, B. K., & Wake, M. H. (Eds.). (1999). The origin and evolution of larval forms. San Diego: Academic Press.

    Google Scholar 

  • Hammerschmidt, M., Serbedzija, G. N., & McMahon, A. P. (1996). Genetic analysis of dorsoventral pattern formation in the zebrafish: Requirement of a BMP-like ventralizing activity and its dorsal repressor. Genes and Development, 10, 2452–2461. doi:10.1101/gad.10.19.2452.

    PubMed  CAS  Google Scholar 

  • Hanken, J., & Hall, B. K. (Eds.). (1993). The vertebrate skull (Vol. I–3). Chicago: The University of Chicago Press.

    Google Scholar 

  • Harada, Y., Okai, N., Taguchi, S., Shoguchi, E., et al. (2001). Embryonic expression of a hemichordate distal-less gene. Zoological Science, 18, 57–61. doi:10.2108/zsj.18.57.

    CAS  Google Scholar 

  • Holland, P. W. H. (1996). Molecular biology of lancelets: Insights into development and evolution. Israel Journal of Zoology, 42, S247–S272.

    Google Scholar 

  • Holland, P. W. H., & Graham, A. (1995). Evolution of regional identity in the vertebrate nervous system. Perspectives on Developmental Neurobiology, 3, 17–27.

    PubMed  CAS  Google Scholar 

  • Holland, L. Z., & Holland, N. D. (1996). Expression of AmphiHox-1 and AmphiPax-1 in amphioxus embryos treated with retinoic acid: Insights into evolution and patterning of the chordate nerve cord and pharynx. Development, 122, 1829–1838.

    PubMed  CAS  Google Scholar 

  • Holland, L. Z., & Holland, N. D. (2001). Evolution of neural crest and placodes: Amphioxus as a model for the ancestral vertebrate? Journal of Anatomy, 199, 85–98.

    PubMed  CAS  Google Scholar 

  • Holland, N. D., Panganiban, G., Henyey, E. L., & Holland, L. Z. (1996). Sequence and developmental expression of AmphiDll, an amphioxus Distal-less gene transcribed in the ectoderm, epidermis and nervous system: Insights into evolution of craniate forebrain and neural crest. Development, 122, 2911–2920.

    PubMed  CAS  Google Scholar 

  • Holland, L. Z., Rached, L. A., Tamme, R., Holland, N. D., et al. (2001). Characterization and developmental expression of the amphioxus homolog of Notch (AmphiNotch): Evolutionary conservation of multiple expression domains in amphioxus and vertebrates. Developmental Biology, 232, 493–507. doi:10.1006/dbio.2001.0160.

    PubMed  CAS  Google Scholar 

  • Holley, S. A., Jackson, P. D., Sasai, Y., Lu, B., et al. (1995). A conserved system for dorsal-ventral patterning in insects and vertebrates involving Sog and Chordin. Nature, 376, 249–253. doi:10.1038/376249a0.

    PubMed  CAS  Google Scholar 

  • Imai, K., Takada, N., Satoh, N., & Satou, Y. (2000). β-catenin mediates the specification of endoderm cells in ascidian embryos. Development, 127, 3009–3020.

    PubMed  CAS  Google Scholar 

  • Janvier, P. (2007). Homologies and evolutionary transitions in early vertebrate history. In J. S. Anderson & H.-D. Sues (Eds.), Major transitions in vertebrate evolution (pp. 57–121). Bloomington: Indiana University Press.

    Google Scholar 

  • Jeffery, W. R. (1997). Evolution of ascidian development. BioScience, 47, 417–425.

    Google Scholar 

  • Jeffery, W. R. (2007). Chordate ancestry of the neural crest: New insights from ascidians. Seminars in Developmental Biology, 18, 481–491. doi:10.1016/j.semcdb.2007.04.005.

    CAS  Google Scholar 

  • Jeffery, W. R., Strickler, A. G., & Yamamoto, Y. (2004). Migratory neural crest-like cells form body pigmentation in a urochordate embryo. Nature, 431, 696–699. doi:10.1038/nature02975.

    PubMed  CAS  Google Scholar 

  • Kimura, C., Takeda, N., Suzuki, M., Oshimura, M., et al. (1997). Cis-acting elements conserved between mouse and pufferfish Otx2 genes govern the expression in mesencephalic neural crest cells. Development, 124, 3929–3941.

    PubMed  CAS  Google Scholar 

  • Kopinke, D., Sasine, J., Swift, J., Stephens, W. Z., & Piotrowski, T. (2006). Retinoic acid is required for endodermal pouch morphogenesis and not for pharyngeal endoderm specification. Developmental Dynamics, 235, 2696–2709.

    Google Scholar 

  • Kozmik, Z., Holland, N. D., Kalousova, A., Paces, J., et al. (1999). Characterization of an amphioxus paired box gene, AmphiPax2/5/8: Developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. Development, 126, 1295–1304.

    PubMed  CAS  Google Scholar 

  • Kumano, G., & Nishida, H. (2007). Ascidian embryonic development: An emerging model system for the study of cell fate specification in chordates. Developmental Dynamics, 236, 1732–1747. doi:10.1002/dvdy.21108.

    PubMed  CAS  Google Scholar 

  • Kuratani, S. C. (1997). Spatial distribution of postotic crest cells defines the head/trunk interface of the vertebrate body: Embryological interpretation of peripheral nerve morphology and evolution of the vertebrate head. Anatomy and Embryology, 195, 1–13. doi:10.1007/s004290050020.

    PubMed  CAS  Google Scholar 

  • Kuratani, S. C. (2004). Evolution of the vertebrate jaw: Comparative embryology and molecular developmental biology reveal the factors behind evolutionary novelty. Journal of Anatomy, 205, 335–347. doi:10.1111/j.0021-8782.2004.00345.x.

    PubMed  CAS  Google Scholar 

  • Kuratani, S. C. (2005). Cephalic neural crest cells and the evolution of craniofacial structures in vertebrates: Morphological and embryological significance of the premandibular-mandibular boundary. Zoology (Jena, Germany), 108, 13–25. doi:10.1016/j.zool.2004.12.001.

    Google Scholar 

  • Kuratani, S. C., Kuraku, S., & Murakami, Y. (2002). Lampreys as an evo-devo model: Lessons from comparative embryology and molecular phylogenetics. Genesis (New York, N.Y.), 34, 175–183. doi:10.1002/gene.10142.

    CAS  Google Scholar 

  • Kuratani, S. C., Nobusada, Y., Horigome, N., & Shigetani, Y. (2001). Embryology of the lamprey and evolution of the vertebrate jaw: Insights from molecular and developmental perspectives. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356, 1615–1632. doi:10.1098/rstb.2001.0976.

    PubMed  CAS  Google Scholar 

  • Kurokawa, D., Sakurai, Y., Inoue, A., Nakayama, R., et al. (2006). Evolutionary constraint on Otx2 neurectoderm enhancers-deep conservation from skate to mouse and unique divergence in teleost. Proceedings of the National Academy of Sciences of the United States of America, 103, 19350–19355. doi:10.1073/pnas.0604686103.

    PubMed  CAS  Google Scholar 

  • Lacalli, T. C. (2006). Prospective protochordate homologs of vertebrate midbrain and MHB, with some thoughts on MHB origins. International Journal of Biological Sciences, 2, 104–109.

    PubMed  CAS  Google Scholar 

  • Lacosta, A. M., Canudas, J., González, C., Muniesa, P., et al. (2007). Pax7 identifies neural crest, chromatophores lineages and pigment stem cells during zebrafish development. The International Journal of Developmental Biology, 51, 327–331. doi:10.1387/ijdb.062217al.

    PubMed  Google Scholar 

  • Langeland, J., Tomsa, J. M., Jackman, W. R., Jr, & Kimmel, C. B. (1998). An amphioxus snail gene: Expression in paraxial mesoderm and neural plate suggests a conserved role in patterning the chordate embryo. Development Genes and Evolution, 208, 569–577. doi:10.1007/s004270050216.

    PubMed  CAS  Google Scholar 

  • Maderson, P. F. A. (Ed.). (1987). Developmental and evolutionary aspects of the neural crest. New York: Wiley.

    Google Scholar 

  • Maisey, J. G. (1986). Heads and tails: A chordate phylogeny. Cladistics, 2, 201–256.

    Google Scholar 

  • Mallatt, J. (1984). Early vertebrate evolution: Pharyngeal structure and the origin of gnathostomes. Journal of Zoology, 204, 169–183.

    Article  Google Scholar 

  • Mallatt, J. (1996). Ventilation and the origin of jawed vertebrates: A new mouth. Zoological Journal of the Linnean Society London, 117, 329–404.

    Google Scholar 

  • Mallatt, J., & Chen, J.-Y. (2003). Fossil sister group of craniates: Predicted and found. Journal of Morphology, 258, 1–31. doi:10.1002/jmor.10081.

    PubMed  Google Scholar 

  • Manni, L., Lane, N. J., Joly, J.-S., Gasparini, F., et al. (2004). Neurogenic and non-neurogenic placodes in ascidians. The Journal of Experimental Zoology, 302B, 483–504. doi:10.1002/jez.b.21013. Mol Dev Evol.

    Google Scholar 

  • Mansouri, A., Stoykova, A., Torres, M., & Gruss, P. (1996). Dysgenesis of cephalic neural crest derivatives in Pax7 / mutant mice. Development, 122, 831–838.

    PubMed  CAS  Google Scholar 

  • Martinez-Morales, J.-R., Henrich, T., Ramialison, M., & Wittbrodt, J. (2007). New genes in the evolution of the neural crest differentiation program. Genome Biology, 8, R36.1–R36.17.

    Google Scholar 

  • Matsuo, I., Kuratani, S., Kimura, C., Takeda, N., & Aizawa, S. (1995). Mouse Otx2 functions in the formation and patterning of rostral head. Genes and Development, 9, 2646–2658. doi:10.1101/gad.9.21.2646.

    PubMed  CAS  Google Scholar 

  • Mazet, F., & Shimeld, S. M. (2005). Molecular evidence from ascidians for the evolutionary origin of vertebrate cranial sensory placodes. The Journal of Experimental Zoology, 304B, 340–346. doi:10.1002/jez.b.21054. Mol Dev Evol.

    CAS  Google Scholar 

  • Meinertzhagen, I. A., & Okamura, Y. (2001). The larval ascidian nervous system: The chordate brain from its small beginnings. Trends in Neurosciences, 24, 401–410. doi:10.1016/S0166-2236(00)01851-8.

    PubMed  CAS  Google Scholar 

  • Meulemans, D., & Bronner-Fraser, M. (2002). Amphioxus and lamprey Ap-2 genes: Implications for neural crest evolution and migration patterns. Development, 129, 4953–4962.

    PubMed  CAS  Google Scholar 

  • Meulemans, D., & Bronner-Fraser, M. (2004). Gene-regulatory interactions in neural crest evolution and development. Developmental Cell, 7, 291–299. doi:10.1016/j.devcel.2004.08.007.

    PubMed  CAS  Google Scholar 

  • Meulemans, D., & Bronner-Fraser, M. (2007). Insights from amphioxus into the evolution of vertebrate cartilage. PLoS ONE, 2(8), e787. doi:10.1371/journal.pone.0000787.

    PubMed  Google Scholar 

  • Miya, T., Morita, K., Suzuki, A., Ueno, N., & Satoh, N. (1997). Functional analysis of an ascidian homologue of vertebrate BMP-2/BMP-4 suggests its role in the inhibition of neural fate specification. Development, 124, 5149–5159.

    PubMed  CAS  Google Scholar 

  • Niederreither, K., Vermot, J., Le Roux, I., Schuhbaur, B., et al. (2003). The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development, 130, 2525–2534. doi:10.1242/dev.00463.

    PubMed  CAS  Google Scholar 

  • Northcutt, R. G. (1996). The origin of craniates—Neural crest, neurogenic placodes, and homeobox genes. Israel Journal of Zoology, 42, S273–S313.

    Google Scholar 

  • Northcutt, R. G. (2004). Taste buds: Development and evolution. Brain, Behavior and Evolution, 64, 198–206. doi:10.1159/000079747.

    PubMed  Google Scholar 

  • Northcutt, R. G., & Gans, C. (1983). The genesis of neural crest and epidermal placodes: A reinterpretation of vertebrate origins. The Quarterly Review of Biology, 58, 1–28. doi:10.1086/413055.

    PubMed  CAS  Google Scholar 

  • Nübler-Jung, K., & Arendt, D. (1994). Is ventral in insects dorsal in vertebrates? A history of embryological arguments favouring axis inversion in chordate ancestors. Wilhelm Roux’ Archiv. Developmental Biology, 203, 357–366.

    Google Scholar 

  • Olsson, L., Ericsson, R., & Cerny, R. (2005). Vertebrate head development: Segmentation, novelties, and homology. Theory in Biosciences, 124, 145–163.

    PubMed  Google Scholar 

  • Ota, K. G., Kuraku, S., & Kuratani, S. (2007). Hagfish embryology with reference to the evolution of the neural crest. Nature, 446, 672–675. doi:10.1038/nature05633.

    PubMed  CAS  Google Scholar 

  • Ota, K. G., & Kuratani, S. (2006). The history of scientific endeavors towards understanding hagfish embryology. Zoological Science, 23, 403–418. doi:10.2108/zsj.23.403.

    PubMed  Google Scholar 

  • Ota, K. G., & Kuratani, S. (2007). Cyclostome embryology and early evolutionary history of vertebrates. Integrative and Comparative Biology, 47, 329–337. doi:10.1093/icb/icm022.

    Google Scholar 

  • Pasini, A., Amiel, A., Rothbacher, U., Roure, A., et al. (2006). Formation of the ascidian epidermal sensory neurons: Insights into the origin of the chordate peripheral nervous system. PLoS Biology, 4, e225. doi:10.1371/journal.pbio.0040225.

    PubMed  Google Scholar 

  • Qiu, M., Bulfone, A., Ghattas, I., Meneses, J. J., et al. (1997). Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: Mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Developmental Biology, 185, 165–284. doi:10.1006/dbio.1997.8556.

    PubMed  CAS  Google Scholar 

  • Raible, D. W., & Ragland, J. W. (2005). Reiterated Wnt and Bmp signals in neural crest development. Seminars in Cell & Developmental Biology, 16, 673–682. doi:10.1016/j.semcdb.2005.06.008.

    CAS  Google Scholar 

  • Rhinn, M., Dierich, A., Shawlot, W., Behringer, R. R., et al. (1998). Sequential roles for Otx2 in visceral endoderm and neurectoderm for forebrain and midbrain induction and specification. Development, 125, 845–856.

    PubMed  CAS  Google Scholar 

  • Romer, A. S. (1972). The vertebrate as a dual animal-somatic and visceral. Evolutionary Biology, 6, 121–156.

    Google Scholar 

  • Rychel, A. L., & Swalla, B. J. (2007). Development and evolution of chordate cartilage. The Journal of Experimental Zoology, 308B, 325–335. doi:10.1002/jez.b.21157. Mol Dev Evol.

    CAS  Google Scholar 

  • Sardet, C., Swalla, B. J., Satoh, N., Sasakura, Y., et al. (2008). Euro chordates: Ascidian community swims ahead. The 4th International Tunicate Meeting in Villefranche sur-Mer. Developmental Dynamics, 237, 1207–1213. doi:10.1002/dvdy.21487.

    PubMed  Google Scholar 

  • Satoh, N. (1994). Developmental biology of ascidians. Cambridge: Cambridge University Press.

    Google Scholar 

  • Saudemont, A., Dray, N., Hudry, B., Le Gouar, M., et al. (2008). Complementary striped expression patterns of NK homeobox genes during segment formation in the annelid Platynereis. Developmental Biology, 317, 430–433. doi:10.1016/j.ydbio.2008.02.013.

    PubMed  CAS  Google Scholar 

  • Sauka-Spengler, T., Meulemans, D., Jones, M., & Bronner-Fraser, M. (2007). Ancient evolutionary origin of the neural crest gene regulatory network. Developmental Cell, 13, 405–420. doi:10.1016/j.devcel.2007.08.005.

    PubMed  CAS  Google Scholar 

  • Schaeffer, B. (1977). The dermal skeleton in fishes. In S. M. Andrews, R. S. Miles, & A. D. Walker (Eds.), Linnean society symposium # 4 (pp. 25–52). London: Academic Press.

    Google Scholar 

  • Schlosser, G. (2007). How old genes make a new head: Redeployment of Six and Eya genes during the evolution of vertebrate cranial placodes. Integrative and Comparative Biology, 47, 343–359. doi:10.1093/icb/icm031.

    CAS  Google Scholar 

  • Sharman, A. C., & Holland, P. W. H. (1998). Estimation of Hox gene cluster number in lampreys. The International Journal of Developmental Biology, 42, 617–620.

    PubMed  CAS  Google Scholar 

  • Shimeld, S. M. (1999). The evolution of dorsoventral pattern formation in the chordate neural tube. American Zoologist, 39, 641–649.

    CAS  Google Scholar 

  • Shu, D.-G., Zhang, X.-L., & Chen, L. (1996). Reinterpretation of Yunnanozoon as the earliest known hemichordate. Nature, 380, 428–430. doi:10.1038/380428a0.

    CAS  Google Scholar 

  • Simeone, A., Acampora, D., Gulisano, M., Stornaiuolo, A., & Boncinelli, E. (1992). Nested expression domains of four homeobox genes in developing rostral brain. Nature, 358, 687–690. doi:10.1038/358687a0.

    PubMed  CAS  Google Scholar 

  • Smith, M. M., & Hall, B. K. (1990). Developmental and evolutionary origins of vertebrate skeletogenic and odontogenic tissues. Biological Reviews of the Cambridge Philosophical Society, 65, 277–374. doi:10.1111/j.1469-185X.1990.tb01427.x.

    PubMed  CAS  Google Scholar 

  • Smith, M. M., & Hall, B. K. (1993). A developmental model for evolution of the vertebrate exoskeleton and teeth: The role of cranial and trunk neural crest. Evolutionary Biology, 27, 387–448.

    Google Scholar 

  • Sperber, S. M., Saxena, V., Hatch, G., & Ekker, M. (2008). Zebrafish dlx2a contributes to hindbrain neural crest survival, is necessary for differentiation of sensory ganglia and functions with dlxa1 in maturation of the arch cartilage elements. Developmental Biology, 314, 59–70. doi:10.1016/j.ydbio.2007.11.005.

    PubMed  CAS  Google Scholar 

  • Stach, T. (2000). Microscopic anatomy of developmental stages of Branchiostoma lanceolatum (Cephalochordata, Chordata). Bonner zoologische Beiträge, 47, 1–111.

    Google Scholar 

  • Stone, J. R., & Hall, B. K. (2004). Latent homologues for the neural crest as an evolutionary novelty. Evolution & Development, 6, 123–129. doi:10.1111/j.1525-142X.2004.04014.x.

    Google Scholar 

  • Suzuki, T., Sakai, D., Osumi, N., Wada, H., & Wakamatsu, Y. (2006). Sox genes regulate type 2 collagen expression in avian neural crest cells. Development, Growth & Differentiation, 48, 477–486. doi:10.1111/j.1440-169X.2006.00886.x.

    CAS  Google Scholar 

  • Wada, H., Saiga, H., Satoh, N., & Holland, P. W. H. (1998). Tripartite organization of the ancestral chordate brain and the antiquity of placodes: Insights from ascidian Pax–2/5/8, Hox and Otx genes. Development, 125, 1113–1122.

    PubMed  CAS  Google Scholar 

  • Whittaker, J. R. (1987). Cell lineages and determinants of cell fate in development. American Zoologist, 27, 607–622.

    Google Scholar 

  • Williams, N. A., & Holland, P. W. H. (1998). Gene and domain duplication in the Chordate Otx gene family: Insights from Amphioxus Otx. Molecular Biology and Evolution, 15, 600–607.

    PubMed  CAS  Google Scholar 

  • Zhang, G., & Cohn, M. J. (2006). Hagfish and lancelet fibrillar collagens reveal that type II collagen-based cartilage evolved in stem vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 103, 16829–16833. doi:10.1073/pnas.0605630103.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Ryan Kearney, Daniel Meulemans and the two anonymous reviewers for constructive comments on the paper, an expanded version of which (including additional literature and discussion of the origin of jaws) will appear as Chapter 4 in Hall (2008a). Research support from the Natural Sciences and Engineering Research Council of Canada (grant # A5056) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian K. Hall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, B.K. Evolutionary Origins of the Neural Crest and Neural Crest Cells. Evol Biol 35, 248–266 (2008). https://doi.org/10.1007/s11692-008-9033-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-008-9033-8

Keywords

Navigation