Skip to main content
Log in

L’acide lysophosphatidique: un lien entre obésité et intolérance au glucose

Lysophosphatidic acid: a link between obesity and glucose-intolerance

  • Article / Article
  • Published:
Obésité

Résumé

L’acide lysophosphatidique (LPA) est un médiateur lipidique agissant via des récepteurs spécifiques (LPAR) et est synthétisé par l’autotaxine (ATX), une lysophospholipase D sécrétée. L’expression de l’ATX augmente chez l’obèse intolérant au glucose. Le LPA inhibe l’adipogenèse et réduit la tolérance au glucose par inhibition de la sécrétion d’insuline. Chez des souris obèses suite à un régime hyperlipidique, l’invalidation de l’ATX dans les adipocytes (FATXKO) ou le traitement par un antagoniste des LPAR amplifient l’expansion de la masse grasse tout en améliorant la tolérance au glucose et à l’insuline. L’ATX et les LPARs représentent des cibles pharmacologiques d’intérêt dans le traitement des atteintes métaboliques associées à l’obésité.

Abstract

Lysophosphatidicacid (LPA) is a lipid mediator acting through specific receptors (LPAR) and is synthesized by autotaxin (ATX), a secreted lysophospholipase D. ATX expression is increased in gluco-intolerant obese individuals. LPA inhibits adipogenesis and impairs glucose tolerance through inhibition of insulin secretion. In obesemice fed a high fat diet, invalidation ATX in adipocytes (FATX-KOmice), or treatment with a LPAR antagonist, enhance adipose tissue expansion while improving glucose and insulin tolerance. Thus, ATX and LPAR represent potential pharmacological targets to treat obesity-associated metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Okudaira S, Yukiura H, Aoki J (2010) Biological roles of lysophosphatidic acid signaling through its production by autotaxin. Biochimie 92:698–706

    Article  CAS  PubMed  Google Scholar 

  2. van Meeteren LA, Ruurs P, Stortelers C, et al (2006) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 26:5015–5022

    Article  PubMed Central  PubMed  Google Scholar 

  3. Tanaka M, Okudaira S, Kishi Y, et al (2006) Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J Biol Chem 281: 25822–25830

    Article  CAS  PubMed  Google Scholar 

  4. Koike S, Yutoh Y, Keino-Masu K, et al (2011) Autotaxin is required for the cranial neural tube closure and establishment of the midbrain-hindbrain boundary during mouse development. Developmental dynamics: an official publication of the American Association of Anatomists 240: 413–421

    Article  Google Scholar 

  5. Fotopoulou S, Oikonomou N, Grigorieva E, et al (2010) ATX expression and LPA signalling are vital for the development of the nervous system. Dev Biol 339:451–464

    Article  CAS  PubMed  Google Scholar 

  6. Lin ME, Herr DR, Chun J (2010) Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins Other Lipid Mediat 91:130–138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chun J, Hla T, Lynch KR, Spiegel S, Moolenaar WH (2010) International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid Receptor Nomenclature. Pharmacol Rev 62:579–587

    Article  CAS  PubMed  Google Scholar 

  8. Contos JJ, Fukushima N, Weiner JA, et al (2000) Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc Natl Acad Sci USA 97: 13384–13389

    Article  CAS  PubMed  Google Scholar 

  9. Choi JW, Herr DR, Noguchi K, et al (2010) LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol 50:157–186

    Article  CAS  PubMed  Google Scholar 

  10. Contos JJ, Ishii I, Fukushima N, et al (2002) Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa(2). Mol Cell Biol 22:6921–6929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ye X, Hama K, Contos JJ, et al (2005) LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 435:104–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hama K, Aoki J, Inoue A, et al (2007) Embryo spacing and implantation timing are differentially regulated by LPA3-mediated lysophosphatidic acid signaling in mice. Biol Reprod 77:954–959

    Article  CAS  PubMed  Google Scholar 

  13. Sumida H, Noguchi K, Kihara Y, et al (2010) LPA4 regulates blood and lymphatic vessel formation during mouse embryogenesis. Blood 116:5060–5070

    Article  CAS  PubMed  Google Scholar 

  14. Lin ME, Rivera RR, Chun J (2012) Targeted deletion of LPA5 identifies novel roles for lysophosphatidic acid signaling in development of neuropathic pain. J Biol Chem 287:17608–17617

    Article  CAS  PubMed  Google Scholar 

  15. Pasternack SM, von Kugelgen I, Al Aboud K, et al (2008) G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nature genetics 40:329–334

    Article  CAS  PubMed  Google Scholar 

  16. Gesta S, Simon MF, Rey A, et al (2002) Secretion of a lysophospholipase D activity by adipocytes: involvement in lysophosphatidic acid synthesis. J Lipid Res 43:904–910

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Ferry G, Tellier E, Try A, et al (2003) Autotaxin is released from adipocytes, catalyzes lysophosphatidic acid synthesis, and activates preadipocyte proliferation. Up-regulated expression with adipocyte differentiation and obesity. J Biol Chem 278:18162–18169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Dusaulcy R, Rancoule C, Gres S, et al (2011) Adipose-specific disruption of autotaxin enhances nutritional fattening and reduces plasma lysophosphatidic acid. J Lipid Res 52:1247–1255

    Article  CAS  PubMed  Google Scholar 

  19. Boucher J, Quilliot D, Praderes JP, et al (2005) Potential involvement of adipocyte insulin resistance in obesity-associated upregulation of adipocyte lysophospholipase D/autotaxin expression. Diabetologia 48:569–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Rancoule C, Dusaulcy R, Treguer K, et al (2012) Depot-specific regulation of autotaxin with obesity in human adipose tissue. J Physiol Biochem 68:635:44

    Article  CAS  PubMed  Google Scholar 

  21. Simon MF, Daviaud D, Pradere JP, et al (2005) Lysophosphatidic acid inhibits adipocyte differentiation via lysophosphatidic acid 1 receptor-dependent down-regulation of peroxisome proliferator-activated receptor gamma2. J Biol Chem 280:14656–14662

    Article  CAS  PubMed  Google Scholar 

  22. Nobusue H, Kondo D, Yamamoto M, Kano K (2010) Effects of lysophosphatidic acid on the in vitro proliferation and differentiation of a novel porcine preadipocyte cell line. Comparative biochemistry and physiology Part B, Biochem Molecular Biol 157:401–407

    Article  Google Scholar 

  23. Bachner D, Ahrens M, Schroder D, et al (1998) Bmp-2 downstream targets in mesenchymal development identified by subtractive cloning from recombinant mesenchymal progenitors (C3H10T1/2). Developmental dynamics: an official publication of the American Association of Anatomists 213:398–411

    Article  CAS  Google Scholar 

  24. Sumida H, Nakamura K, Yanagida K, et al (2013) Decrease in circulating autotaxin by oral administration of prednisolone. Clin Chim Acta; Intern J Clin Chemist 415:74–80

    Article  CAS  Google Scholar 

  25. Simon MF, Rey A, Castan-Laurel I, et al (2002) Expression of ectolipid phosphate phosphohydrolases in 3T3F442A preadipocytes and adipocytes. Involvement in the control of lysophosphatidic acid production. J Biol Chem 277:23131–23136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Pages C, Daviaud D, An S, et al (2001) Endothelial differentiation gene-2 receptor is involved in lysophosphatidic acid-dependent control of 3T3F442A preadipocyte proliferation and spreading. J Biol Chem 276:11599–11605

    Article  CAS  PubMed  Google Scholar 

  27. Holmstrom TE, Mattsson CL, Wang Y, et al (2010) Nontransactivational, dual pathways for LPA-induced Erk1/2 activation in primary cultures of brown pre-adipocytes. Exp Cell Res 316:2664–2675

    Article  PubMed  Google Scholar 

  28. Mattsson CL, Andersson ER, Nedergaard J (2010) Differential involvement of caveolin-1 in brown adipocyte signaling: impaired beta3-adrenergic, but unaffected LPA, PDGF and EGF receptor signaling. Biochim Biophys Acta 1803:983–989

    Article  CAS  PubMed  Google Scholar 

  29. Federico L, Ren H, Mueller PA, et al (2012) Autotaxin and its product lysophosphatidic acid suppress brown adipose differentiation and promote diet-induced obesity in mice. Mol Endocrinol 26:786–787

    Article  CAS  PubMed  Google Scholar 

  30. Noguchi M, Hosoda K, Fujikura J, et al (2007) Genetic and pharmacological inhibition of Rho-associated kinase II enhances adipogenesis. J Biol Chem 282:29574–29583

    Article  CAS  PubMed  Google Scholar 

  31. Li L, Tam L, Liu L, Jin T, Ng DS (2011) Wnt-signaling mediates the anti-adipogenic action of lysophosphatidic acid through cross talking with the Rho/Rho associated kinase (ROCK) pathway. Biochemistry and cell biology = Biochimie et biologie cellulaire 89:515–521

    Article  CAS  PubMed  Google Scholar 

  32. Dusaulcy R, Daviaud D, Pradere JP, et al (2009) Altered food consumption in mice lacking lysophosphatidic acid receptor-1. J Physiol Biochem 65:345–350

    Article  CAS  PubMed  Google Scholar 

  33. Ohta H, Sato K, Murata N, et al (2003) Ki16425, a subtypeselective antagonist for EDG-family lysophosphatidic acid receptors. Mol Pharmacol 64:994–1005

    Article  CAS  PubMed  Google Scholar 

  34. Rancoule C, Dusaulcy R, Treguer K, et al (2013) Involvement of Autotaxin/Lysophosphatidic acid signaling in obesity and impaired glucose homeostasis. Biochimie DOI 10.1016

  35. Tang QQ, Lane MD (2012) Adipogenesis: from stem cell to adipocyte. Annual review of biochemistry 81:715–736

    Article  CAS  PubMed  Google Scholar 

  36. Lee MJ, Wu Y, Fried SK (2010) Adipose tissue remodeling in pathophysiology of obesity. Curr Opin Clin Nutr Metab Care 13:371–376

    Article  PubMed Central  PubMed  Google Scholar 

  37. Gutierrez DA, Puglisi MJ, Hasty AH (2009) Impact of increased adipose tissue mass on inflammation, insulin resistance, and dyslipidemia. Curr Diab Rep 9:26–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Grundy SM (2012) Pre-diabetes, metabolic syndrome, and cardiovascular risk. J Am Coll Cardiol 59:635–643

    Article  CAS  PubMed  Google Scholar 

  39. Rancoule C, Attane C, Gres S, et al (2013) Lysophosphatidic acid impairs glucose homeostasis and inhibits insulin secretion in high-fat diet obese mice. Diabetologia DOI 10.1007/s00125-013-2891-3

    Google Scholar 

  40. Yea K, Kim J, Lim S, et al (2008) Lysophosphatidic acid regulates blood glucose by stimulating myotube and adipocyte glucose uptake. J Mol Med 86:211–220

    Article  CAS  PubMed  Google Scholar 

  41. Song X, Zheng X, Malbon CC, Wang H (2001) Galpha i2 enhances in vivo activation of and insulin signaling to GLUT4. J Biol Chem 276:34651–34658

    Article  CAS  PubMed  Google Scholar 

  42. Im DS, Fujioka T, Katada T, et al (1997) Characterization of sphingosine 1-phosphate-induced actions and its signaling pathways in rat hepatocytes. Am J Physiol 272:G1091–G1099

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -S. Saulnier-Blache.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rancoule, C., Dusaulcy, R., Attané, C. et al. L’acide lysophosphatidique: un lien entre obésité et intolérance au glucose. Obes 8, 244–247 (2013). https://doi.org/10.1007/s11690-013-0384-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11690-013-0384-7

Mots clés

Keywords

Navigation