Skip to main content
Log in

Implication du microbiote intestinal dans l’obésité et les pathologies associées : quelles perspectives thérapeutiques et nutritionnelles ?

Implication of the gut microbiota in obesity and metabolic disorders: focus on therapeutic and nutritional perspectives

  • Article / Article
  • Published:
Obésité

Résumé

Les cent mille milliards de bactéries qui colonisent l’intestin interviennent dans la régulation du métabolisme énergétique et de fonctions biologiques importantes de l’hôte. Cet article résume les données récentes qui décrivent les changements de composition et d’activité bactériennes associées au surpoids et aux pathologies associées, en évaluant les approches expérimentales qui pourraient mener à la découverte de nouvelles cibles thérapeutiques (et nutritionnelles) dans le contexte de l’obésité.

Abstract

The gut microbiota is increasingly considered as a symbiotic partner for the maintenance of health. Experimental data in animals and observational studies in obese patients, describe differences in gut microbiota composition in obese and in lean individuals, or patients presenting obesity-related metabolic alterations. The metagenomic approaches could help discovering how the complex gut microbial ecosystem could participate in the control of host energy metabolism, and could be relevant for future therapeutic developments, including nutritional approaches, for overweight patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Qin J, Li R, Raes J, et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  PubMed  CAS  Google Scholar 

  2. Claesson MJ, Jeffery IB, Conde S, et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184

    Article  PubMed  CAS  Google Scholar 

  3. Angelakis E, Armougom F, Million M, et al (2012) The relationship between gut microbiota and weight gain in humans. Future Microbiol 7:91–109

    Article  PubMed  Google Scholar 

  4. Shanahan F (2012) The gut microbiota-a clinical perspective on lessons learned. Nat Rev Gastroenterol Hepatol 9:609–614

    Article  PubMed  CAS  Google Scholar 

  5. Arumugam M, Raes J, Pelletier E, et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    Article  PubMed  CAS  Google Scholar 

  6. Wu GD, Chen J, Hoffmann C, et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108

    Article  PubMed  CAS  Google Scholar 

  7. Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249

    Article  PubMed  CAS  Google Scholar 

  8. Delzenne NM, Neyrinck AM, Backhed F, et al (2011) Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 7:639–646.

    Article  PubMed  CAS  Google Scholar 

  9. Turnbaugh PJ, Ridaura VK, Faith JJ, et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14

    Article  PubMed  Google Scholar 

  10. Turnbaugh PJ, Ley RE, Mahowald MA, et al (2006) An obesityassociated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  11. Delzenne NM, Cani PD (2011) Interaction between obesity and the gut microbiota: relevance in nutrition. Annu Rev Nutr 31:15–31

    Article  PubMed  CAS  Google Scholar 

  12. Tolhurst G, Heffron H, Lam YS, et al (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the Gprotein-coupled receptor FFAR2. Diabetes 61: 364–371

    Article  PubMed  CAS  Google Scholar 

  13. Ge H, Li X, Weiszmann J, et al (2008) Activation of G proteincoupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149:4519–4526

    Article  PubMed  CAS  Google Scholar 

  14. Brown AJ, Goldsworthy SM, Barnes AA, et al (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319

    Article  PubMed  CAS  Google Scholar 

  15. Aron-Wisnewsky J, Dore J, Clement K (2012) The importance of the gut microbiota after bariatric surgery. Nat Rev Gastroenterol Hepatol 9:590–598

    Article  PubMed  Google Scholar 

  16. Furet JP, Kong LC, Tap J, et al (2010) Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59:3049–3057

    Article  PubMed  CAS  Google Scholar 

  17. Kalliomaki M, Collado MC, Salminen S, et al (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87:534–538

    PubMed  CAS  Google Scholar 

  18. Collado MC, Isolauri E, Laitinen K, et al (2010) Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr 92:1023–1030

    Article  PubMed  CAS  Google Scholar 

  19. Wu X, Ma C, Han L, et al (2010) Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol 61:69–78

    Article  PubMed  CAS  Google Scholar 

  20. Santacruz A, Collado MC, Garcia-Valdes L, et al (2010) Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 104:83–92

    Article  PubMed  CAS  Google Scholar 

  21. Koren O, Goodrich JK, Cullender TC, et al (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150:470–480

    Article  PubMed  CAS  Google Scholar 

  22. Gummesson A, Carlsson LM, Storlien LH, et al (2011) Intestinal permeability is associated with visceral adiposity in healthy women. Obesity (Silver Spring) 19:2280–2282

    Article  Google Scholar 

  23. Cani PD, Osto M, Geurts L, et al (2012) Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3:279–288

    Article  PubMed  Google Scholar 

  24. Laugerette F, Vors C, Peretti N, et al (2011) Complex links between dietary lipids, endogenous endotoxins and metabolic inflammation. Biochimie 93:39–45

    Article  PubMed  CAS  Google Scholar 

  25. Amar J, Serino M, Lange C, et al (2011) Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 54:3055–3061

    Article  PubMed  CAS  Google Scholar 

  26. Vrieze A, Van NE, Holleman F, et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913–916

    Article  PubMed  CAS  Google Scholar 

  27. Roberfroid M, Gibson GR, Hoyles L, et al (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104Suppl 2: S1–S63

    Article  PubMed  CAS  Google Scholar 

  28. Muccioli GG, Naslain D, Backhed F, et al (2010) The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 6:392

    Article  PubMed  Google Scholar 

  29. Everard A, Lazarevic V, Derrien M, et al (2011) Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60: 2775–2786

    Article  PubMed  CAS  Google Scholar 

  30. Dewulf EM, Cani PD, Neyrinck AM, et al (2011) Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARgamma-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J Nutr Biochem 22:712–722

    Article  PubMed  CAS  Google Scholar 

  31. Neyrinck AM, Van Hée VF, Piront N, et al (2012) Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutrition and Diabetes 2, e28; doi:10.1038/nutd.2011.24

    Article  PubMed  CAS  Google Scholar 

  32. Cani PD, Neyrinck AM, Fava F, et al (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50:2374–2383

    Article  PubMed  CAS  Google Scholar 

  33. Dewulf EM, Cani PD, Claus SP, et al (2012). Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Delzenne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delzenne, N.M., Neyrinck, A.M. & Cani, P.D. Implication du microbiote intestinal dans l’obésité et les pathologies associées : quelles perspectives thérapeutiques et nutritionnelles ?. Obes 7, 234–239 (2012). https://doi.org/10.1007/s11690-012-0346-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11690-012-0346-5

Mots clés

Keywords

Navigation