Skip to main content
Log in

Rôle de l’enzyme 11β-hydroxystéroïde-déshydrogénase de type 1 dans le risque métabolique associé à l’obésité

Role of 11β-hydroxysteroid-dehydrogenase type 1 in the metabolic risk associated with obesity

  • Article Scientifique / Scientific Article
  • Published:
Obésité

Résumé

Certaines similitudes entre le syndrome métabolique associé à l’obésité abdominale et le syndrome de Cushing ont fait rechercher un excès tissulaire en glucocorticoïdes, même en l’absence de taux anormalement élevés dans le plasma. L’enzyme 11β-hydroxystéroïde-déshydrogénase de type 1 (11HSD1), qui convertit la cortisone (inactive) en cortisol (actif) dans les tissus cibles, présente une augmentation d’expression et d’activité en cas d’obésité, au moins dans certains tissus impliqués dans les régulations métaboliques, comme le tissu adipeux. Les données expérimentales obtenues sur des rongeurs mettent en évidence un lien direct entre l’apparition d’anomalies métaboliques et une augmentation d’activite de la 11HSD1 et entre un profil métabolique favorable et l’invalidation du gène codant pour cette enzyme chez des souris KO. L’administration d’inhibiteurs spécifiques de la 11HSD1 entraîne une amélioration des profils glucidiques et lipidiques, ainsi qu’une perte de poids, à condition que la 11HSD1 soit inhibée dans le tissu adipeux (plutôt que dans le foie). Des résultats préliminaires obtenus avec divers inhibiteurs, puissants et sélectifs, de la 11HSD1 ont révélé une diminution de l’insulinorésistance, une amélioration de la tolérance au glucose ou du contrôle glycémique et une amélioration du profil lipidique chez l’homme. Si ces résultats se confirment, les inhibiteurs sélectifs de la 11HSD1 pourraient représenter à l’avenir une nouvelle classe pharmacologique destinée à corriger les anomalies métaboliques associées à l’obésité, y compris le diabète de type 2.

Abstract

Similarities between metabolic syndrome associated with abdominal obesity and Cushing syndrome led to the search of excessive local tissue exposition to glucocorticoids at the cellular levels, despite normal circulating plasma levels of cortisol. To this respect, 11β-hydroxysteroid-dehydrogenase type 1 (11HSD1), which converts cortisone (inactive) to cortisol (active) in target tissues, raises much interest. Both increased expression and activity of this enzyme has been reported in presence of obesity, at least in some tissues that play a major role in metabolic regulations, such as adipose tissue. Experimental data in rodents showed a direct link between increased 11HSD1 activity and the development of metabolic disturbances. Furthermore, studies in mice KO for 11HSD1 demonstrated the potential of the inhibition of this enzyme to alleviate the metabolic abnormalities related to diet-induced obesity. The administration of specific inhibitors of 11HSD1 resulted in significant improvement of glucose and lipid profiles, together with a weight reduction, provided that 11HSD1 activity was blocked in the adipose tissue (rather than in the liver). Preliminary observations when various, potent and selective, inhibitors of 11HSD1 given in humans also showed a diminution of insulin resistance, an improvement of glucose tolerance or glucose control and an amelioration of lipid profile. In case of confirmation of such promising results, selective inhibitors of 11HSD1 might represent a new pharmacological class aiming at treating metabolic abnormalities associated with obesity, including type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Anagnostis P, Athyros VG, Tziomalos K, et al (2009) The pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab 94:2692–701

    Article  CAS  PubMed  Google Scholar 

  2. Björntorp P, Rosmond R (2000) Obesity and cortisol. Nutrition 16:924–36

    Article  PubMed  Google Scholar 

  3. Tomlinson JW, Walker EA, Bujalska IJ, et al (2004) 11β-hydroxysteroïd-dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev 25:831–66

    Article  CAS  PubMed  Google Scholar 

  4. Vantyghem MC, Marcelli-Tourvieille S, Defrance F, et al (2007) 11β-hydroxystéroïde-déshydrogénase. Avancées récentes. Ann Endocrinol (Paris) 68:349–56

    CAS  Google Scholar 

  5. Iovino A, Scheen AJ (2009) La 11β-hydroxystéroïde-déshydrogénase de type 1: première partie: rôle de l’exposition tissulaire au cortisol dans le risque métabolique lié à l’obésité. Med Mal Metab (sous presse)

  6. Iovino A, Scheen AJ (2009) La 11β-hydroxystéroïde-déshydrogénase de type 1: deuxième partie: inhibition sélective pour traiter les anomalies métaboliques associées à l’obésité. Med Mal Metab (sous presse)

  7. Bujalska IJ, Kumar S, Stewart PM (1997) Does central obesity reflect “Cushing’s disease of the omentum?” Lancet 349:1210–3

    Article  CAS  PubMed  Google Scholar 

  8. Tomlinson JW, Stewart PM (2004) “Cushing’s disease of the omentum”: fact or fiction? J Endocrinol Invest 27:171–4

    CAS  PubMed  Google Scholar 

  9. Walker BR, Andrew R (2006) Tissue production of cortisol by 11β-hydroxysteroid dehydrogenase type 1 and metabolic disease. Ann NY Acad Sci 1083:165–84

    Article  CAS  PubMed  Google Scholar 

  10. Swali A, Walker EA, Lavery GG, et al (2008) 11β-hydroxysteroid dehydrogenase type 1 regulates insulin and glucagon secretion in pancreatic islets. Diabetologia 51:2003–11

    Article  CAS  PubMed  Google Scholar 

  11. Bujalska IJ, Walker EA, Hewison M, et al (2002) A switch in dehydrogenase to reductase activity of 11β-hydroxysteroid-dehydrogenase type 1 upon differentiation of human omental adipose stromal cells. J Clin Endocrinol Metab 87:1205–10

    Article  CAS  PubMed  Google Scholar 

  12. Bujalska IJ, Draper N, Michailidou Z, et al (2005) Hexose-6-phosphate dehydrogenase confers oxoreductase activity upon 11β-hydoxysteroid-dehydrogenase type 1. J Mol Endocrinol 34:675–84

    Article  CAS  PubMed  Google Scholar 

  13. Stulnig TM, Waldhäusl W (2004) 11β-hydroxysteroid-dehydrogenase type 1 in obesity and type 2 diabetes. Diabetologia 47: 1–11

    Article  CAS  PubMed  Google Scholar 

  14. Stimson RH, Andersson J, Andrew R, et al (2009) Cortisol release from adipose tissue by 11β-hydroxysteroid-dehydrogenase type 1 in humans. Diabetes 58:46–53

    Article  CAS  PubMed  Google Scholar 

  15. Iwasaki Y, Takayasu S, Nishiyama M, et al (2008) Is the metabolic syndrome an intracellular Cushing state? Effects of multiple humoral factors on the transcriptional activity of the hepatic glucocorticoid-activating enzyme (11β-hydroxysteroid-dehydrogenase type 1) gene. Mol Cell Endocrinol 285:10–8

    Article  CAS  PubMed  Google Scholar 

  16. London E, Castonguay TW (2009) Diet and the role of 11β-hydroxysteroid-dehydrogenase-1 on obesity. J Nutr Biochem 20:485–93

    Article  CAS  PubMed  Google Scholar 

  17. Nieuwenhuizen AG, Rutters F (2008) The hypothalamic-pituitary-adrenal axis in the regulation of energy balance. Physiol Behav 94:169–77

    Article  CAS  PubMed  Google Scholar 

  18. Walker BR (2007) Extra-adrenal regeneration of glucocorticoids by 11β-hydroxysteroid-dehydrogenase type 1: physiological regulator and pharmacological target for energy partitioning. Proc Nutr Soc 66:1–8

    Article  CAS  PubMed  Google Scholar 

  19. Beger J, Tanen M, Elbrecht A, et al (2001) Peroxisome proliferator activated receptor gamma ligands inhibit adipocyte 11β-hydroxysteroid-dehydrogenase type 1 expression and activity. J Biol Chem 276:12629–35

    Article  Google Scholar 

  20. Wake DJ, Stimson RH, Tan GD, et al (2007) Effects of peroxysome proliferator activated receptor-α and-γ agonists on 11β-hydroxysteroid-dehydrogenase type 1 in sub-cutaneous adipose tissue in men. J Clin Endocrinol Metab 92:1848–56

    Article  CAS  PubMed  Google Scholar 

  21. Morton NM, Seckl JR (2008) 11β-hydroxysteroid-dehydrogenase type 1 and obesity. Front Horm Res 36:146–64

    Article  CAS  PubMed  Google Scholar 

  22. Lloyd DJ, Helmering J, Cordover D, et al (2009) Anti-diabetic effects of 11β-HSD1 inhibition in a mouse model of combined diabetes, dyslipidaemia and atherosclerosis. Diabetes Obes Metab 11:688–99

    Article  CAS  PubMed  Google Scholar 

  23. Boyle CD, Kowalski TJ (2009) 11β-hydroxysteroid-dehydrogenase type 1 inhibitors: a review of recent patents. Exp Opin Ther Pat 19:801–25

    Article  CAS  Google Scholar 

  24. Berthiaume M, Laplante M, Festuccia WT, et al (2009) Additive action of 11β-HSD1 inhibition and PPAR-gamma agonism on hepatic steatosis and triglyceridemia in diet-induced obese rats. Int J Obes 33:601–4

    Article  CAS  Google Scholar 

  25. Basu R, Singh RJ, Basu A, et al (2005) Obesity and type 2 diabetes do not alter splanchnic cortisol production in humans. J Clin Endocrinol Metab 90:3919–26

    Article  CAS  PubMed  Google Scholar 

  26. Sandeep TC, Andrew R, Homer NZM, et al (2005) Increased in vivo regeneration of cortisol in adipose tissue in human obesity and effects of the 11β-hydroxysteroid-dehydrogenase type 1 inhibitor carbenoxolone. Diabetes 54:872–9

    Article  CAS  PubMed  Google Scholar 

  27. Andrew R, Westerbacka J, Wahren J, et al (2005) The contribution of visceral adipose tissue to splanchnic cortisol production in healthy humans. Diabetes 54:1364–70

    Article  CAS  PubMed  Google Scholar 

  28. Basu R, Basu A, Grudzien M, et al (2009) Liver is the site of splanchnic cortisol production in obese non-diabetic humans. Diabetes 58:39–45

    Article  CAS  PubMed  Google Scholar 

  29. Rask E, Olsson T, Söderberg S, et al (2001) Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab 86:1418–21

    Article  CAS  PubMed  Google Scholar 

  30. Stewart PM, Boulton A, Kumar S, et al (1999) Cortisol metabolism in human obesity: Impaired cortisone→cortisol conversion in subjects with central adiposity. J Clin Endocrinol Metab 84:1022–7

    Article  CAS  PubMed  Google Scholar 

  31. Rask E, Walker BR, Söderberg S, et al (2002) Tissue-specific changes in peripheral cortisol metabolism in obese women: increased adipose 11β-hydroxysteroid-dehydrogenase type 1 activity. J Clin Endocrinol Metab 87:3330–6

    Article  CAS  PubMed  Google Scholar 

  32. Stewart PM, Tomlinson JW (2009) Selective inhibitors of 11β-hydroxysteroid-dehydrogenase type 1 for patients with metabolic syndrome, is the target liver, fat, or both? (commentary). Diabetes 58:14–5

    Article  CAS  PubMed  Google Scholar 

  33. Tomlinson JW, Finney J, Gay C, et al (2008) Impaired glucose tolerance and insulin resistance are associated with increased adipose 11β-hydroxysteroid-dehydrogenase type 1 expression and elevated hepatic 5-alpha-reductase activity. Diabetes 57:2652–60

    Article  CAS  PubMed  Google Scholar 

  34. Veilleux A, Rhéaume C, Daris M, et al (2009) Omental adipose tissue 11β-HSD1 oxoreductase activity, body fat distribution and metabolic alterations in women. J Clin Endocrinol Metab 94:3550–7

    Article  CAS  PubMed  Google Scholar 

  35. Purnell JQ, Kahn SE, Samuels MH, et al (2009) Enhanced cortisol production rates, free cortisol, and 11β-HSD1 expression correlate with visceral fat and insulin resistance in men: effect of weight loss. Am J Physiol Endocrinol Metab 296:E351–7

    Article  CAS  PubMed  Google Scholar 

  36. Valsamakis G, Anwar A, Tomlinson JW, et al (2004) 11β-hydroxysteroid-dehydrogenase type 1 activity in lean and obese males with type 2 diabetes mellitus. J Clin Endocrinol Metab 89:4755–61

    Article  CAS  PubMed  Google Scholar 

  37. Tomlinson JW, Stewart PM (2007) Modulation of glucocorticoid action and the treatment of type 2 diabetes. Best Pract Res Clin Endocrinol Metab 21:607–19

    Article  CAS  PubMed  Google Scholar 

  38. Wamil M, Seckl JR (2007) Inhibition of 11β-hydroxysteroid-dehydrogenase type 1 as a promising therapeutic target. Drug Discov Today 12:504–20

    Article  CAS  PubMed  Google Scholar 

  39. Bujalska IJ, Gathercole LL, Tomlinson JW, et al (2008) A novel selective 11β-hydroxysteroid-dehydrogenase type 1 inhibitor prevents human adipogenesis. J Endocrinol 197:297–307

    Article  CAS  PubMed  Google Scholar 

  40. Courtney R, Stewart PM, Toh M, et al (2008) Modulation of 11β-hydroxysteroid-dehydrogenase (11β-HSD) activity biomarkers and pharmacokinetics of PF-00915275: a selective 11β-HSD1 inhibitor. J Clin Endocrinol Metab 93:550–6

    Article  CAS  PubMed  Google Scholar 

  41. Hawkins M, Hunter D, Kishore P, et al (2008) INCB013739, a selective inhibitor of 11β-hydroxysteroid-dehydrogenase type 1 (11β-HSD1), improves insulin sensitivity and lowers plasma cholesterol over 28 days in patients with type 2 diabetes mellitus (Abstract). Diabetes 57 (Suppl. 1):A99–A100

    Google Scholar 

  42. Rosenstock J, Banarer S, Fonseca V, et al (2009) Efficacy and safety of the 11β-HSD1 inhibitor, INCB13739, added to metformin therapy in patients with type 2 diabetes (abstract). Diabetes 59(Suppl. 1):late breaking abstract 7-LB

  43. Ye YL, Zhou Z, Zou HJ, et al (2009) Discovery of novel dual functional agent as PPARgamma agonist and 11β-HSD1 inhibitor for the treatment of diabetes. Bioorg Med Chem 17:5722–32

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iovino, A., Paquot, N. & Scheen, A. Rôle de l’enzyme 11β-hydroxystéroïde-déshydrogénase de type 1 dans le risque métabolique associé à l’obésité. Obes 4, 181–188 (2009). https://doi.org/10.1007/s11690-009-0204-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11690-009-0204-2

Mots clés

Keywords

Navigation