Skip to main content
Log in

Novel Strategy for In Vitro Validation of Babesia orientalis Heat Shock Proteins Chaperone Activity and Thermostability

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Background

Babesia orientalis is an intra-erythrocytic protozoan parasite that causes babesiosis in water buffalo. The genome of B. orientalis has been reported and various genes have been accurately annotated, including heat shock proteins (HSP). Three B. orientalis HSPs (HSP90, HSP70 and HSP20) have been previously identified as potential antigenic targets. Here, a new validation strategy for the chaperone activities and cell protection characteristics of the three HSPs was developed in vitro.

Methods

BoHSP20, BoHSP70 and BoHSP90B were amplified from cDNA, followed by cloning them into the pEGFP-N1 vector and transfecting the vector plasmid separately into 293T and Hela mammalian cells. Their expression and localization were determined by fluorescence microscopy. The biological functions and protein stability were testified through an analysis of the fluorescence intensity duration. Their role in the protection of cell viability from heat-shock treatments was examined by MTT assay (cell proliferation assay based on thiazolyl blue tetrazolium bromide).

Results

Fusion proteins pEGFP-N1-BoHSP20, pEGFP-N1-BoHSP70, and pEGFP-N1-BoHSP90B (pBoHSPs: pBoHSP20; pBoHSP70 and pBoHSP90B) were identified as 47 kDa/97 kDa/118 kDa with a 27 kDa GFP tag, respectively. Prolonged fluorescent protein half-time was observed specifically in pBoHSPs under heat shock treatment at 55 °C, and BoHSP20 showed relatively better thermotolerance than BoHSP70 and BoHSP90B. Significant difference was found between pBoHSPs and controls in the cell survival curve after 2 h of 45 °C heat shock.

Conclusion

Significant biological properties of heat stress-associated genes of B. orientalis were identified in eukaryote by a new strategy. Fusion proteins pBoHSP20, pBoHSP70 and pBoHSP90B showed good chaperone activity and thermo-stability in this study, implying that BoHSPs played a key role in protecting B. orientalis against heat-stress environment during parasite life cycle. In conclusion, the in vitro model explored in this study provides a new way to investigate the biological functions of B. orientalis proteins during the host–parasite interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author upon reasonable request.

Abbreviations

HSPs:

Heat shock proteins

BoHSPs:

Babesia orientalis Heat shock proteins

BoHSP20:

Babesia orientalis Heat shock protein 20

BoHSP70:

Babesia orientalis Heat shock protein 70

BoHSP90B:

Babesia orientalis Heat shock protein 90 B

pBoHSPs:

Babesia orientalis Heat shock proteins eukaryotically expressing on pEGFP-N1 vector

pBoHSP20:

Babesia orientalis Heat shock protein 20 eukaryotically expressing on pEGFP-N1 vector

pBoHSP70:

Babesia orientalis Heat shock protein 70 eukaryotically expressing on pEGFP-N1 vector

pBoHSP90B:

Babesia orientalis Heat shock protein 90B eukaryotically expressing on pEGFP-N1 vector

ACD:

Alpha-crystallin domain

NBD:

Nucleotide-binding domain

MTT:

Thiazolyl blue tetrazolium bromide

s:

Seconds

m:

Minutes

h:

Hours

References

  1. Liu Z, Zhao J, Ma L, Yao B (1997) Studies on buffalo babesiosis in Hubei Province, China. Trop Anim Health Prod 29(4 Suppl):33S-36S. https://doi.org/10.1007/BF02632914

    Article  CAS  PubMed  Google Scholar 

  2. He L, Feng HH, Zhang WJ et al (2012) Occurrence of Theileria and Babesia species in water buffalo (Bubalus babalis, Linnaeus, 1758) in the Hubei province, South China. Vet Parasitol 186(3–4):490–496. https://doi.org/10.1016/j.vetpar.2011.11.021

    Article  PubMed  Google Scholar 

  3. Schnittger L, Ganzinelli S, Bhoora R, Omondi D, Nijhof AM, Florin-Christensen M (2022) The Piroplasmida Babesia, Cytauxzoon, and Theileria in farm and companion animals: species compilation, molecular phylogeny, and evolutionary insights. Parasitol Res 121(5):1207–1245. https://doi.org/10.1007/s00436-022-07424-8

    Article  PubMed  Google Scholar 

  4. He L, Liu Q, Yao B et al (2017) A Historical overview of research on babesia orientalis, a protozoan parasite infecting water buffalo. Front Microbiol 8:1323. https://doi.org/10.3389/fmicb.2017.01323

    Article  PubMed  PubMed Central  Google Scholar 

  5. Huang Y, He L, Hu J et al (2015) Characterization and annotation of Babesia orientalis apicoplast genome. Parasit Vectors 8:543. https://doi.org/10.1186/s13071-015-1158-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He L, Liu Q, Quan M, Zhou DN, Zhou YQ, Zhao JL (2009) Molecular cloning and phylogenetic analysis of Babesia orientalis heat shock protein 70. Vet Parasitol 162(3–4):183–191. https://doi.org/10.1016/j.vetpar.2009.03.039

    Article  CAS  PubMed  Google Scholar 

  7. He L, Yu Q, Zhang WJ et al (2014) Molecular cloning and characterization of a novel heat shock protein 20 of Babesia orientalis. Vet Parasitol 204(3–4):177–183. https://doi.org/10.1016/j.vetpar.2014.04.021

    Article  CAS  PubMed  Google Scholar 

  8. Khan MK, He L, Zhang W et al (2014) Identification of two novel HSP90 proteins in Babesia orientalis: molecular characterization, and computational analyses of their structure, function, antigenicity and inhibitor interaction. Parasit Vectors 7:293. https://doi.org/10.1186/1756-3305-7-293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spriggs KA, Bushell M, Willis AE (2010) Translational regulation of gene expression during conditions of cell stress. Mol Cell 40(2):228–237. https://doi.org/10.1016/j.molcel.2010.09.028

    Article  CAS  PubMed  Google Scholar 

  10. Vonlaufen N, Kanzok SM, Wek RC, Sullivan WJ Jr (2008) Stress response pathways in protozoan parasites. Cell Microbiol 10(12):2387–2399. https://doi.org/10.1111/j.1462-5822.2008.01210.x

    Article  CAS  PubMed  Google Scholar 

  11. Bu X, Zhao W, Li M et al (2022) Transcriptomic differences between free-living and parasitic Chilodonella uncinata (Alveolata, Ciliophora). Microorganisms 10(8):1646. https://doi.org/10.3390/microorganisms10081646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maresca B, Kobayashi GS (1994) Hsp70 in parasites: as an inducible protective protein and as an antigen. Experientia 50(11–12):1067–1074. https://doi.org/10.1007/BF01923463

    Article  CAS  PubMed  Google Scholar 

  13. Requena JM, Montalvo AM, Fraga J (2015) Molecular chaperones of leishmania: central players in many stress-related and -unrelated physiological processes. Biomed Res Int 2015:301326. https://doi.org/10.1155/2015/301326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40(2):253–266. https://doi.org/10.1016/j.molcel.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  15. Hyttinen JM, Amadio M, Viiri J, Pascale A, Salminen A, Kaarniranta K (2014) Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases. Ageing Res Rev 18:16–28. https://doi.org/10.1016/j.arr.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  16. Szymańska Z, Zylicz M (2009) Mathematical modeling of heat shock protein synthesis in response to temperature change. J Theor Biol 259(3):562–569. https://doi.org/10.1016/j.jtbi.2009.03.021

    Article  CAS  PubMed  Google Scholar 

  17. Winkler J, Tyedmers J, Bukau B, Mogk A (2012) Chaperone networks in protein disaggregation and prion propagation. J Struct Biol 179(2):152–160. https://doi.org/10.1016/j.jsb.2012.05.002

    Article  CAS  PubMed  Google Scholar 

  18. Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122(1):189–198. https://doi.org/10.1104/pp.122.1.189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Clerico EM, Tilitsky JM, Meng W, Gierasch LM (2015) How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J Mol Biol 427(7):1575–1588. https://doi.org/10.1016/j.jmb.2015.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scheff JD, Stallings JD, Reifman J, Rakesh V (2015) Mathematical modeling of the heat-shock response in HeLa cells. Biophys J 109(2):182–193. https://doi.org/10.1016/j.bpj.2015.06.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karagöz GE, Rüdiger SG (2015) Hsp90 interaction with clients. Trends Biochem Sci 40(2):117–125. https://doi.org/10.1016/j.tibs.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  22. Bakthisaran R, Tangirala R, Rao CM (2015) Small heat shock proteins: Role in cellular functions and pathology. Biochim Biophys Acta 1854(4):291–319. https://doi.org/10.1016/j.bbapap.2014.12.019

    Article  CAS  PubMed  Google Scholar 

  23. Haslbeck M, Vierling E (2015) A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 427(7):1537–1548. https://doi.org/10.1016/j.jmb.2015.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McHaourab HS, Godar JA, Stewart PL (2009) Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry 48(18):3828–3837. https://doi.org/10.1021/bi900212j

    Article  CAS  PubMed  Google Scholar 

  25. Montagna GN, Buscaglia CA, Münter S et al (2012) Critical role for heat shock protein 20 (HSP20) in migration of malarial sporozoites. J Biol Chem 287(4):2410–2422. https://doi.org/10.1074/jbc.M111.302109

    Article  CAS  PubMed  Google Scholar 

  26. Poulain P, Gelly JC, Flatters D (2010) Detection and architecture of small heat shock protein monomers. PLoS One 5(4):e9990. https://doi.org/10.1371/journal.pone.0009990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Narberhaus F (2002) Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66(1):64–93. https://doi.org/10.1128/MMBR.66.1.64-93.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mayer MP (2013) Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem Sci 38(10):507–514. https://doi.org/10.1016/j.tibs.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  29. Shonhai A, Blatch GL (2013) Heat shock proteins of malaria. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7438-4

    Book  Google Scholar 

  30. Rieger TR, Morimoto RI, Hatzimanikatis V (2005) Mathematical modeling of the eukaryotic heat-shock response: dynamics of the hsp70 promoter. Biophys J 88(3):1646–1658. https://doi.org/10.1529/biophysj.104.055301

    Article  CAS  PubMed  Google Scholar 

  31. Ben-Zvi AP, Goloubinoff P (2001) Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J Struct Biol 135(2):84–93. https://doi.org/10.1006/jsbi.2001.4352

    Article  CAS  PubMed  Google Scholar 

  32. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125(3):443–451. https://doi.org/10.1016/j.cell.2006.04.014

    Article  CAS  PubMed  Google Scholar 

  33. McClellan AJ, Tam S, Kaganovich D, Frydman J (2005) Protein quality control: chaperones culling corrupt conformations. Nat Cell Biol 7(8):736–741. https://doi.org/10.1038/ncb0805-736

    Article  CAS  PubMed  Google Scholar 

  34. Cho Y, Zhang X, Pobre KF et al (2015) Individual and collective contributions of chaperoning and degradation to protein homeostasis in E. coli. Cell Rep 11(2):321–333. https://doi.org/10.1016/j.celrep.2015.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (2022YFD1800200), the National Natural Science Foundation of China (31772729), the Natural Science Foundation of Hubei Province (2017CFA020), and the Natural Science Foundation of Guangdong Province (2021A1515010485). This study was supported by the National Key Research and Development Program of China (2022YFD1800200), the National Natural Science Foundation of China (Grant No. 31930108), the Natural Science Foundation of Guangdong Province (2021A1515010485), Top-notch Young Talent Supporting Program (to L. He), and the Fundamental Research Funds for the Central Universities (2262022DKYJ001).

Author information

Authors and Affiliations

Authors

Contributions

JH wrote the draft of the manuscript. JZ and LH revised the manuscript. LF, YH, and PH had work in Parasitology lab, Huazhong Agricultural University, China. They contribute the basic need for B. orientalis heat shock protein research. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Junlong Zhao.

Ethics declarations

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Fan, L., Huang, Y. et al. Novel Strategy for In Vitro Validation of Babesia orientalis Heat Shock Proteins Chaperone Activity and Thermostability. Acta Parasit. 69, 591–598 (2024). https://doi.org/10.1007/s11686-023-00775-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-023-00775-x

Keywords

Navigation