Skip to main content

Advertisement

Log in

Can Echinococcus granulosus-Derived MicroRNAs be Biomarkers for Diagnosis and Follow-up of Cystic Echinococcosis Patients?

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Introduction

Cystic echinococcosis (CE) is a neglected tropical disease caused by the larval stages of Echinococcus granulosus (E. granulosus). MicroRNAs (miRNAs) are small noncoding RNAs acting as mediators in host-parasite interaction. Recently, numerous studies have been conducted on miRNAs in infectious diseases; however, little data are available about the role of miRNAs in pathogenesis and early diagnosis of CE.

Methods

The current study evaluated the expression of four E. granulosus-derived miRNAs, including egr-miR-125,5p, egr-let-7,5p, egr-miR-2, and egr-miR-71 in fibrotic and healthy liver tissues of 31 CE patients with active and inactive hydatid cysts by qRT-PCR.

Results

Of the 31 patients, 48.4% had active cysts (CE1 and CE2), while the remainder had transitional (16.1%) and inactive (35.5%) CE types cysts. The qRT-PCR analysis revealed a significant increase of 11.2, 9.91, 6.2, and 13.1-fold in the fibrotic tissue group for egr-miR-125,5p, egr-let-7,5p, egr-miR-2, and egr-miR-71, respectively. Among these miRNAs, egr-miR-125-5p exhibited the highest area under the curve (AUC) value of 0.8050 for predicting liver fibrosis.

Conclusions

Our findings provide new data about the role of E. granulosus-derived miRNAs in pathogenesis of CE. The high AUC of egr-miR125,5p reflecting the possibility of using egr-miR125,5p as biomarker in CE diagnosis. Further studies on serum of CE patients are needed to confirm the potential role of circulating egr-miR-2a-3p and egr-miR-125-5p in the early diagnosis of CE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during the current study are included in the paper.

References

  1. Mariconti M, Vola A, Manciulli T, Genco F, Lissandrin R, Meroni V, Rosenzvit M, Tamarozzi F, Brunetti E (2019) Role of microRNAs in host defense against Echinococcus granulosus infection: a preliminary assessment. Immunol Res 67(1):93–97. https://doi.org/10.1007/s12026-018-9041-4

    Article  CAS  PubMed  Google Scholar 

  2. Kalifu B, Maitiseyiti A, Ge X, Chen X, Meng Y (2021) Expression profile of circular RNAs in cystic echinococcosis pericystic tissue. J Clin Lab Anal 35(3):e23687–e23687. https://doi.org/10.1002/jcla.23687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Díaz Á (2017) Immunology of cystic echinococcosis (hydatid disease). Br Med Bull 124(1):121–133. https://doi.org/10.1093/bmb/ldx033

    Article  CAS  PubMed  Google Scholar 

  4. Anthony B, Allen JT, Li YS, McManus DP (2010) Hepatic stellate cells and parasite-induced liver fibrosis. Parasit Vectors 3(1):60. https://doi.org/10.1186/1756-3305-3-60

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang C, Wang L, Ali T, Li L, Bi X, Wang J, Lü G, Shao Y, Vuitton DA, Wen H, Lin R (2016) Hydatid cyst fluid promotes peri-cystic fibrosis in cystic echinococcosis by suppressing miR-19 expression. Parasit Vectors 9(1):278. https://doi.org/10.1186/s13071-016-1562-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li G, Li J, Li C, Qi H, Dong P, Zheng J, Yu F (2016) MicroRNA-125a-5p contributes to hepatic stellate cell activation through targeting FIH1. Cellular Physiol Biochem 38(4):1544–1552. https://doi.org/10.1159/000443095

    Article  CAS  Google Scholar 

  7. Szabo G, Bala S (2013) MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 10(9):542–552. https://doi.org/10.1038/nrgastro.2013.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brunetti E, Tamarozzi F, Macpherson C, Filice C, Piontek MS, Kabaalioglu A, Dong Y, Atkinson N, Richter J, Schreiber-Dietrich D (2018) Ultrasound and cystic echinococcosis. Ultrasound Int Open 4(03):E70–E78

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pedrosa I, Saíz A, Arrazola J, Ferreirós J, Pedrosa CS (2000) Hydatid disease: radiologic and pathologic features and complications. Radiographics 20(3):795–817. https://doi.org/10.1148/radiographics.20.3.g00ma06795

    Article  CAS  PubMed  Google Scholar 

  10. Velasco-Tirado V, Romero-Alegría Á, Belhassen-García M, Alonso-Sardón M, Esteban-Velasco C, López-Bernús A, Carpio-Perez A, Jimenez López MF, Muñoz Bellido JL, Muro A, Cordero-Sanchez M, Pardo-Lledias J, Muñoz-Bellvis L (2017) Recurrence of cystic echinococcosis in an endemic area: a retrospective study. BMC Infect Dis 17(1):455. https://doi.org/10.1186/s12879-017-2556-9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Alizadeh Z, Mahami-Oskouei M, Spotin A, Kazemi T, Ahmadpour E, Cai P, Shanehbandi D, Shekari N (2020) Parasite-derived microRNAs in plasma as novel promising biomarkers for the early detection of hydatid cyst infection and post-surgery follow-up. Acta trop 202:105255

    Article  CAS  PubMed  Google Scholar 

  12. Örsten S, Baysal İ, Yabanoglu-Ciftci S, Ciftci T, Ünal E, Akıncı D, Akyön Y, Akhan O (2022) Can parasite-derived microRNAs differentiate active and inactive cystic echinococcosis patients? Parasitol Res 121(1):191–196. https://doi.org/10.1007/s00436-021-07382-7

    Article  PubMed  Google Scholar 

  13. Cabral BCA, Hoffmann L, Bottaro T, Costa PF, Ramos ALA, Coelho HSM, Villela-Nogueira CA, Ürményi TP, Faffe DS, Silva R (2020) Circulating microRNAs associated with liver fibrosis in chronic hepatitis C patients. Biochem Biophys Rep 24:100814. https://doi.org/10.1016/j.bbrep.2020.100814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma L, Yang X, Wei R, Ye T, Zhou J-K, Wen M, Men R, Li P, Dong B, Liu L, Fu X, Xu H, Aqeilan RI, Wei Y-Q, Yang L, Peng Y (2018) MicroRNA-214 promotes hepatic stellate cell activation and liver fibrosis by suppressing Sufu expression. Cell Death Dis 9(7):718. https://doi.org/10.1038/s41419-018-0752-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen Q, Zhang J, Zheng T, Chen H, Nie H, Zheng B, Gong Q (2019) The role of microRNAs in the pathogenesis, grading and treatment of hepatic fibrosis in schistosomiasis. Parasites Vectors 12(1):611. https://doi.org/10.1186/s13071-019-3866-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cabantous S, Hou X, Louis L, He H, Mariani O, Sastre X, Daujat-Chavanieu M, Li Y, Dessein A (2017) Evidence for an important role of host microRNAs in regulating hepatic fibrosis in humans infected with Schistosoma japonicum. Int J Parasitol 47(13):823–830. https://doi.org/10.1016/j.ijpara.2017.05.007

    Article  CAS  PubMed  Google Scholar 

  17. Jin X, Guo X, Zhu D, Ayaz M, Zheng Y (2017) miRNA profiling in the mice in response to Echinococcus multilocularis infection. Acta Trop 166:39–44. https://doi.org/10.1016/j.actatropica.2016.10.024

    Article  CAS  PubMed  Google Scholar 

  18. Imasato Y, Nakao R, Irie T, Kouguchi H, Yagi K, Nariaki N, Katakura K (2021) Characterization of microRNAs expressed in the cystic legion of the liver of Mus musculus perorally infected with Echinococcus multilocularis Nemuro strain. Parasitol Int 81:102247. https://doi.org/10.1016/j.parint.2020.102247

    Article  CAS  PubMed  Google Scholar 

  19. Coakley G, Maizels RM, Buck AH (2015) Exosomes and other extracellular vesicles: the new communicators in parasite infections. Trends Parasitol 31(10):477–489. https://doi.org/10.1016/j.pt.2015.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. He Z, Yan T, Yuan Y, Yang D, Yang G (2020) miRNAs and lncRNAs in Echinococcus and Echinococcosis. Int J Mol Sci 21(3):730. https://doi.org/10.3390/ijms21030730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang X, Gong W, Cao S, Yin J, Zhang J, Cao J, Shen Y (2020) Comprehensive analysis of non-coding rna profiles of exosome-like vesicles from the protoscoleces and hydatid cyst fluid of Echinococcus granulosus. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2020.00316

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wu QB, Chen J, Zhu JW, Yin X, You HY, Lin YR, Zhu HQ (2018) MicroRNA125 inhibits RKO colorectal cancer cell growth by targeting VEGF. Int J Mol Med 42(1):665–673. https://doi.org/10.3892/ijmm.2018.3632

    Article  CAS  PubMed  Google Scholar 

  23. Mu Y, McManus DP, Gordon CA, Cai P (2021) Parasitic helminth-derived micrornas and extracellular vesicle cargos as biomarkers for helminthic infections. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2021.708952

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cucher M, Prada L, Mourglia-Ettlin G, Dematteis S, Camicia F, Asurmendi S, Rosenzvit M (2011) Identification of Echinococcus granulosus microRNAs and their expression in different life cycle stages and parasite genotypes. Int J Parasitol 41(3):439–448. https://doi.org/10.1016/j.ijpara.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  25. Liu J, Zhu L, Wang J, Qiu L, Chen Y, Davis RE, Cheng G (2019) Schistosoma japonicum extracellular vesicle miRNA cargo regulates host macrophage functions facilitating parasitism. PLoS Pathog 15(6):e1007817. https://doi.org/10.1371/journal.ppat.1007817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moens U, Kostenko S, Sveinbjørnsson B (2013) The Role of mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) in inflammation. Genes 4(2):101–133. https://doi.org/10.3390/genes4020101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Macchiaroli N, Maldonado LL, Zarowiecki M, Cucher M, Gismondi MI, Kamenetzky L, Rosenzvit MC (2017) Genome-wide identification of microRNA targets in the neglected disease pathogens of the genus Echinococcus. Mol Biochem Parasitol 214:91–100. https://doi.org/10.1016/j.molbiopara.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  28. Mortezaei S, Afgar A, Sadeghi B, Mohammadi MA, Mousavi SM, Harandi MF (2021) Comparative Analysis of miRNA Expressions in different developmental stages of Echinococcus granulosus in mono-phasic and di-phasic culture systems. Infect Disord Drug Targets 21(5):e270421187569. https://doi.org/10.2174/1871526520999201103192518

    Article  CAS  PubMed  Google Scholar 

  29. Group WIW (2003) International classification of ultrasound images in cystic echinococcosis for application in clinical and field epidemiological settings. Acta Trop 85(2):253–261. https://doi.org/10.1016/s0001-706x(02)00223-1

    Article  Google Scholar 

  30. Siracusano A, Delunardo F, Teggi A, Ortona E (2012) Host-parasite relationship in cystic echinococcosis: an evolving story. Clin Dev Immunol 2012:639362. https://doi.org/10.1155/2012/639362

    Article  PubMed  Google Scholar 

  31. Zheng Y, Guo X, He W, Shao Z, Zhang X, Yang J, Shen Y, Luo X, Cao J (2016) Effects of Echinococcus multilocularis miR-71 mimics on murine macrophage RAW264.7 cells. Int Immunopharmacol 34:259–262. https://doi.org/10.1016/j.intimp.2016.03.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the patients who participated in this study and the staff of Ahvaz’s hospitals for their assistance with sample collection. This study was conducted as part of M. Fasihi Karami’s Ph.D. thesis.

Funding

The Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, provided financial support for this project under grant CMRC-0022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Molouk Beiromvand.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fasihi Karami, M., Beiromvand, M., Rafiei, A. et al. Can Echinococcus granulosus-Derived MicroRNAs be Biomarkers for Diagnosis and Follow-up of Cystic Echinococcosis Patients?. Acta Parasit. 68, 231–239 (2023). https://doi.org/10.1007/s11686-022-00654-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-022-00654-x

Keywords

Navigation