Skip to main content
Log in

Insights into optimizing exosome therapies for acute skin wound healing and other tissue repair

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Exosome therapy holds great promise as a novel approach to improve acute skin wound healing. This review provides a comprehensive overview of the current understanding of exosome biology and its potential applications in acute skin wound healing and beyond. Exosomes, small extracellular vesicles secreted by various stem cells, have emerged as potent mediators of intercellular communication and tissue repair. One advantage of exosome therapy is its ability to avoid potential risks associated with stem cell therapy, such as immune rejection or stem cells differentiating into unwanted cell types. However, further research is necessary to optimize exosome therapy, not only in the areas of exosome isolation, characterization, and engineering, but also in determining the optimal dose, timing, administration, and frequency of exosome therapy. Thus, optimization of exosome therapy is critical for the development of more effective and safer exosome-based therapies for acute skin wound healing and other diseases induced by cancer, ischemia, or inflammation. This review provides valuable insights into the potential of exosome therapy and highlights the need for further research to optimize exosome therapy for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sen CK. Human wounds and its burden: an updated compendium of estimates. Adv Wound Care (New Rochelle) 2019; 8(2): 39–48

    Article  PubMed  Google Scholar 

  2. Sen CK. Human wound and its burden: updated 2020 compendium of estimates. Adv Wound Care (New Rochelle) 2021; 10(5): 281–292

    Article  PubMed  Google Scholar 

  3. Bacakova L, Zarubova J, Travnickova M, Musilkova J, Pajorova J, Slepicka P, Kasalkova NS, Svorcik V, Kolska Z, Motarjemi H, Molitor M. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells — a review. Biotechnol Adv 2018; 36(4): 1111–1126

    Article  PubMed  Google Scholar 

  4. Xue M, Dervish S, Jackson CJ. Isolation of human skin epidermal stem cells based on the expression of endothelial protein C receptor. In: Turksen K. Skin Stem Cells. Methods in Molecular Biology, vol 1879. New York: Humana Press, 2018: 165–174

    Chapter  Google Scholar 

  5. Mokry J, Pisal R. Development and maintenance of epidermal stem cells in skin adnexa. Int J Mol Sci 2020; 21(24): 9736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brockmann I, Ehrenpfordt J, Sturmheit T, Brandenburger M, Kruse C, Zille M, Rose D, Boltze J. Skin-derived stem cells for wound treatment using cultured epidermal autografts: clinical applications and challenges. Stem Cells Int 2018; 2018: 4623615

    Article  PubMed  PubMed Central  Google Scholar 

  7. Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146: 97–125

    Article  CAS  PubMed  Google Scholar 

  8. Xiaojie W, Banda J, Qi H, Chang AK, Bwalya C, Chao L, Li X. Scarless wound healing: current insights from the perspectives of TGF-β, KGF-1, and KGF-2. Cytokine Growth Factor Rev 2022; 66: 26–37

    Article  PubMed  Google Scholar 

  9. Liu J, Qiu X, Lv Y, Zheng C, Dong Y, Dou G, Zhu B, Liu A, Wang W, Zhou J, Liu S, Liu S, Gao B, Jin Y. Apoptotic bodies derived from mesenchymal stem cells promote cutaneous wound healing via regulating the functions of macrophages. Stem Cell Res Ther 2020; 11(1): 507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou X, Ning K, Ling B, Chen X, Cheng H, Lu B, Gao Z, Xu J. Multiple injections of autologous adipose-derived stem cells accelerate the burn wound healing process and promote blood vessel regeneration in a rat model. Stem Cells Dev 2019; 28(21): 1463–1472

    Article  CAS  PubMed  Google Scholar 

  11. Li M, Qiu L, Hu W, Deng X, Xu H, Cao Y, Xiao Z, Peng L, Johnson S, Alexey L, Kingston PA, Li Q, Zhang Y. Genetically-modified bone mesenchymal stem cells with TGF-β(3) improve wound healing and reduce scar tissue formation in a rabbit model. Exp Cell Res 2018; 367(1): 24–29

    Article  CAS  PubMed  Google Scholar 

  12. Li Q, Qi G, Lutter D, Beard W, Souza CRS, Highland MA, Wu W, Li P, Zhang Y, Atala A, Sun X. Injectable peptide hydrogel encapsulation of mesenchymal stem cells improved viability, stemness, anti-inflammatory effects, and early stage wound healing. Biomolecules 2022; 12(9): 1317

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yin X, Li Q, McNutt PM, Zhang Y. Urine-derived stem cells for epithelial tissues reconstruction and wound healing. Pharmaceutics 2022; 14(8): 1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jeong JO, Han JW, Kim JM, Cho HJ, Park C, Lee N, Kim DW, Yoon YS. Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circ Res 2011; 108(11): 1340–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 2015; 17(1): 11–22

    Article  CAS  PubMed  Google Scholar 

  16. Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 2013; 19(8): 998–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 2011; 11(4): 268–277

    Article  CAS  PubMed  Google Scholar 

  18. Min J, Zhang C, Bliton RJ, Caldwell B, Caplan L, Presentation KS, Park DJ, Kong SH, Lee HS, Washington MK, Kim WH, Lau KS, Magness ST, Lee HJ, Yang HK, Goldenring JR, Choi E. Dysplastic stem cell plasticity functions as a driving force for neoplastic transformation of precancerous gastric mucosa. Gastroenterology 2022; 163(4): 875–890

    Article  PubMed  Google Scholar 

  19. Deuse T, Hu X, Gravina A, Wang D, Tediashvili G, De C, Thayer WO, Wahl A, Garcia JV, Reichenspurner H, Davis MM, Lanier LL, Schrepfer S. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol 2019; 37(3): 252–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pearl JI, Lee AS, Leveson-Gower DB, Sun N, Ghosh Z, Lan F, Ransohoff J, Negrin RS, Davis MM, Wu JC. Short-term immunosuppression promotes engraftment of embryonic and induced pluripotent stem cells. Cell Stem Cell 2011; 8(3): 309–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature 2011; 474(7350): 212–215

    Article  CAS  PubMed  Google Scholar 

  22. Gopalarethinam J, Nair AP, Iyer M, Vellingiri B, Subramaniam MD. Advantages of mesenchymal stem cell over the other stem cells. Acta Histochem 2023; 125(4): 152041

    Article  CAS  PubMed  Google Scholar 

  23. Ford E, Pearlman J, Ruan T, Manion J, Waller M, Neely GG, Caron L. Human pluripotent stem cells-based therapies for neurodegenerative diseases: current status and challenges. Cells 2020; 9(11): 2517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shpichka A, Butnaru D, Bezrukov EA, Sukhanov RB, Atala A, Burdukovskii V, Zhang Y, Timashev P. Skin tissue regeneration for burn injury. Stem Cell Res Ther 2019; 10(1): 94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y, He Y, Bharadwaj S, Hammam N, Carnagey K, Myers R, Atala A, Van Dyke M. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials 2009; 30(23–24): 4021–4028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Orlando G, Wood KJ, De Coppi P, Baptista PM, Binder KW, Bitar KN, Breuer C, Burnett L, Christ G, Farney A, Figliuzzi M, Holmes JH, Koch K, Macchiarini P, Mirmalek Sani SH, Opara E, Remuzzi A, Rogers J, Saul JM, Seliktar D, Shapira-Schweitzer K, Smith T, Solomon D, Van Dyke M, Yoo JJ, Zhang Y, Atala A, Stratta RJ, Soker S. Regenerative medicine as applied to general surgery. Ann Surg 2012; 255(5): 867–880

    Article  PubMed  Google Scholar 

  27. Prasai A, Jay JW, Jupiter D, Wolf SE, El Ayadi A. Role of exosomes in dermal wound healing: a systematic review. J Invest Dermatol 2022; 142(3): 662–678.e8

    Article  CAS  PubMed  Google Scholar 

  28. Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol 2015; 77(1): 13–27

    Article  CAS  PubMed  Google Scholar 

  29. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu Y, Chen M, Guo Q, Shen L, Liu X, Pan J, Zhang Y, Xu T, Zhang D, Wei G. Human umbilical cord mesenchymal stem cell exosome-derived miR-874-3p targeting RIPK1/PGAM5 attenuates kidney tubular epithelial cell damage. Cell Mol Biol Lett 2023; 28(1): 12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Canning P, Alwan A, Khalil F, Zhang Y, Opara EC. Perspectives and challenges on the potential use of exosomes in bioartificial pancreas engineering. Ann Biomed Eng 2022; 50(10): 1177–1186

    Article  PubMed  Google Scholar 

  32. Deng C, Xie Y, Zhang C, Ouyang B, Chen H, Lv L, Yao J, Liang X, Zhang Y, Sun X, Deng C, Liu G. Urine-derived stem cells facilitate endogenous spermatogenesis restoration of busulfan-induced nonobstructive azoospermic mice by paracrine exosomes. Stem Cells Dev 2019; 28(19): 1322–1333

    Article  CAS  PubMed  Google Scholar 

  33. Hu P, Yang Q, Wang Q, Shi C, Wang D, Armato U, Prà ID, Chiarini A. Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration. Burns Trauma 2019; 7: 38

    Article  PubMed  PubMed Central  Google Scholar 

  34. Abdelsaid K, Sudhahar V, Harris RA, Das A, Youn SW, Liu Y, McMenamin M, Hou Y, Fulton D, Hamrick MW, Tang Y, Fukai T, Ushio-Fukai M. Exercise improves angiogenic function of circulating exosomes in type 2 diabetes: role of exosomal SOD3. FASEB J 2022; 36(3): e22177

    Article  CAS  PubMed  Google Scholar 

  35. Zhao W, Zhang R, Zang C, Zhang L, Zhao R, Li Q, Yang Z, Feng Z, Zhang W, Cui R. Exosome derived from mesenchymal stem cells alleviates pathological scars by inhibiting the proliferation, migration and protein expression of fibroblasts via delivering miR-138-5p to target SIRT1. Int J Nanomedicine 2022; 17: 4023–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Park KY, Han HS, Park JW, Kwon HH, Park GH, Seo SJ. Exosomes derived from human adipose tissue-derived mesenchymal stem cells for the treatment of dupilumab-related facial redness in patients with atopic dermatitis: a report of two cases. J Cosmet Dermatol 2022; 21(2): 844–849

    Article  PubMed  Google Scholar 

  37. Yang GH, Lee YB, Kang D, Choi E, Nam Y, Lee KH, You HJ, Kang HJ, An SH, Jeon H. Overcome the barriers of the skin: exosome therapy. Biomater Res 2021; 25(1): 22

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ha DH, Kim HK, Lee J, Kwon HH, Park GH, Yang SH, Jung JY, Choi H, Lee JH, Sung S, Yi YW, Cho BS. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells 2020; 9(5): 1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002; 2(8): 569–579

    Article  PubMed  Google Scholar 

  40. EL Andaloussi S, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 2013; 12(5): 347–357

    Article  CAS  PubMed  Google Scholar 

  41. Karnati HK, Garcia JH, Tweedie D, Becker RE, Kapogiannis D, Greig NH. Neuronal enriched extracellular vesicle proteins as biomarkers for traumatic brain injury. J Neurotrauma 2019; 36(7): 975–987

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hade MD, Suire CN, Mossell J, Suo Z. Extracellular vesicles: emerging frontiers in wound healing. Med Res Rev 2022; 42(6): 2102–2125

    Article  CAS  PubMed  Google Scholar 

  43. Han QF, Li WJ, Hu KS, Gao J, Zhai WL, Yang JH, Zhang SJ. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer 2022; 21(1): 207

    Article  PubMed  PubMed Central  Google Scholar 

  44. Farooqi AA, Desai NN, Qureshi MZ, Librelotto DRN, Gasparri ML, Bishayee A, Nabavi SM, Curti V, Daglia M. Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv 2018; 36(1): 328–334

    Article  CAS  PubMed  Google Scholar 

  45. Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 1985; 101(3): 942–948

    Article  CAS  PubMed  Google Scholar 

  46. Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 1983; 33(3): 967–978

    Article  CAS  PubMed  Google Scholar 

  47. Yan C, Chen J, Wang C, Yuan M, Kang Y, Wu Z, Li W, Zhang G, Machens HG, Rinkevich Y, Chen Z, Yang X, Xu X. Milk exosomes-mediated miR-31-5p delivery accelerates diabetic wound healing through promoting angiogenesis. Drug Deliv 2022; 29(1): 214–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gurunathan S, Kang MH, Kim JH. A comprehensive review on factors influences biogenesis, functions, therapeutic and clinical implications of exosomes. Int J Nanomedicine 2021; 16: 1281–1312

    Article  PubMed  PubMed Central  Google Scholar 

  49. Choi EW, Seo MK, Woo EY, Kim SH, Park EJ, Kim S. Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts. Exp Dermatol 2018; 27(10): 1170–1172

    Article  CAS  PubMed  Google Scholar 

  50. Narauskaitė D, Vydmantaitė G, Rusteikaitė J, Sampath R, Rudaitytė A, Stašytė G, Aparicio Calvente MI, Jekabsone A. Extracellular vesicles in skin wound healing. Pharmaceuticals (Basel) 2021; 14(8): 811

    Article  PubMed  Google Scholar 

  51. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev 2019; 99(1): 665–706

    Article  CAS  PubMed  Google Scholar 

  52. Čoma M, Manning JC, Kaltner H, Gál P. The sweet side of wound healing: galectins as promising therapeutic targets in hemostasis, inflammation, proliferation, and maturation/remodeling. Expert Opin Ther Targets 2023; 27(1): 41–53

    Article  PubMed  Google Scholar 

  53. Hassanshahi A, Moradzad M, Ghalamkari S, Fadaei M, Cowin AJ, Hassanshahi M. Macrophage-mediated inflammation in skin wound healing. Cells 2022; 11(19): 2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res 2012; 49(1): 35–43

    Article  CAS  PubMed  Google Scholar 

  55. Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem 2022; 298(2): 101530

    Article  CAS  PubMed  Google Scholar 

  56. Talbott HE, Mascharak S, Griffin M, Wan DC, Longaker MT. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 2022; 29(8): 1161–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Johnson J, Wu YW, Blyth C, Lichtfuss G, Goubran H, Burnouf T. Prospective therapeutic applications of platelet extracellular vesicles. Trends Biotechnol 2021; 39(6): 598–612

    Article  CAS  PubMed  Google Scholar 

  58. Sinauridze EI, Kireev DA, Popenko NY, Pichugin AV, Panteleev MA, Krymskaya OV, Ataullakhanov FI. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007; 97(3): 425–434

    Article  CAS  PubMed  Google Scholar 

  59. Antich-Rosselló M, Forteza-Genestra MA, Monjo M, Ramis JM. Platelet-derived extracellular vesicles for regenerative medicine. Int J Mol Sci 2021; 22(16): 8580

    Article  PubMed  PubMed Central  Google Scholar 

  60. Graça AL, Domingues RMA, Gomez-Florit M, Gomes ME. Platelet-derived extracellular vesicles promote tenogenic differentiation of stem cells on bioengineered living fibers. Int J Mol Sci 2023; 24(4): 3516

    Article  PubMed  PubMed Central  Google Scholar 

  61. Xu N, Wang L, Guan J, Tang C, He N, Zhang W, Fu S. Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model. Int J Biol Macromol 2018; 117: 102–107

    Article  CAS  PubMed  Google Scholar 

  62. Guo SC, Tao SC, Yin WJ, Qi X, Yuan T, Zhang CQ. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics 2017; 7(1): 81–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim H, Wang SY, Kwak G, Yang Y, Kwon IC, Kim SH. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Adv Sci (Weinh) 2019; 6(20): 1900513

    Article  CAS  PubMed  Google Scholar 

  64. He X, Dong Z, Cao Y, Wang H, Liu S, Liao L, Jin Y, Yuan L, Li B. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing. Stem Cells Int 2019; 2019: 7132708

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hu JC, Zheng CX, Sui BD, Liu WJ, Jin Y. Mesenchymal stem cell-derived exosomes: a novel and potential remedy for cutaneous wound healing and regeneration. World J Stem Cells 2022; 14(5): 318–329

    Article  PubMed  PubMed Central  Google Scholar 

  66. Su D, Tsai HI, Xu Z, Yan F, Wu Y, Xiao Y, Liu X, Wu Y, Parvanian S, Zhu W, Eriksson JE, Wang D, Zhu H, Chen H, Cheng F. Exosomal PD-L1 functions as an immunosuppressant to promote wound healing. J Extracell Vesicles 2020; 9(1): 1709262

    Article  CAS  Google Scholar 

  67. Kwak G, Cheng J, Kim H, Song S, Lee SJ, Yang Y, Jeong JH, Lee JE, Messersmith PB, Kim SH. Sustained exosome-guided macrophage polarization using hydrolytically degradable PEG hydrogels for cutaneous wound healing: identification of key proteins and miRNAs, and sustained release formulation. Small 2022; 18(15): 2200060

    Article  CAS  Google Scholar 

  68. Qiu X, Liu J, Zheng C, Su Y, Bao L, Zhu B, Liu S, Wang L, Wang X, Wang Y, Zhao W, Zhou J, Deng Z, Liu S, Jin Y. Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis. Cell Prolif 2020; 53(8): e12830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tutuianu R, Rosca AM, Iacomi DM, Simionescu M, Titorencu I. Human mesenchymal stromal cell-derived exosomes promote in vitro wound healing by modulating the biological properties of skin keratinocytes and fibroblasts and stimulating angiogenesis. Int J Mol Sci 2021; 22(12): 6239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Marofi F, Alexandrovna KI, Margiana R, Bahramali M, Suksatan W, Abdelbasset WK, Chupradit S, Nasimi M, Maashi MS. MSCs and their exosomes: a rapidly evolving approach in the context of cutaneous wounds therapy. Stem Cell Res Ther 2021; 12(1): 597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Than UTT, Guanzon D, Leavesley D, Parker T. Association of extracellular membrane vesicles with cutaneous wound healing. Int J Mol Sci 2017; 18(5): 956

    Article  PubMed  PubMed Central  Google Scholar 

  72. Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Van Badiavas E. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev 2015; 24(14): 1635–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhao B, Zhang X, Zhang Y, Lu Y, Zhang W, Lu S, Fu Y, Zhou Y, Zhang J, Zhang J. Human exosomes accelerate cutaneous wound healing by promoting collagen synthesis in a diabetic mouse model. Stem Cells Dev 2021; 30(18): 922–933

    Article  CAS  PubMed  Google Scholar 

  74. Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q, Xie Z, Zhang C, Wang Y. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 2015; 13(1): 49

    Article  PubMed  PubMed Central  Google Scholar 

  75. Oh EJ, Gangadaran P, Rajendran RL, Kim HM, Oh JM, Choi KY, Chung HY, Ahn BC. Extracellular vesicles derived from fibroblasts promote wound healing by optimizing fibroblast and endothelial cellular functions. Stem Cells 2021; 39(3): 266–279

    Article  CAS  PubMed  Google Scholar 

  76. Bian D, Wu Y, Song G, Azizi R, Zamani A. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: a comprehensive review. Stem Cell Res Ther 2022; 13(1): 24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang J, Xiong J, Yang L, Zhang J, Sun S, Liang Y. Cell-free exosome-laden scaffolds for tissue repair. Nanoscale 2021; 13(19): 8740–8750

    Article  CAS  PubMed  Google Scholar 

  78. Tenchov R, Sasso JM, Wang X, Liaw WS, Chen CA, Zhou QA. Exosomes—nature’s lipid nanoparticles, a rising star in drug delivery and diagnostics. ACS Nano 2022; 16(11): 17802–17846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143–147

    Article  CAS  PubMed  Google Scholar 

  80. Liu S, Zhou J, Zhang X, Liu Y, Chen J, Hu B, Song J, Zhang Y. Strategies to optimize adult stem cell therapy for tissue regeneration. Int J Mol Sci 2016; 17(6): 982

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mousaei Ghasroldasht M, Seok J, Park HS, Liakath Ali FB, Al-Hendy A. Stem cell therapy: from idea to clinical practice. Int J Mol Sci 2022; 23(5): 2850

    Article  PubMed  PubMed Central  Google Scholar 

  82. Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi Dehkordi S. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther 2019; 10(1): 111

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yousefi Dehbidi M, Goodarzi N, Azhdari MH, Doroudian M. Mesenchymal stem cells and their derived exosomes to combat Covid-19. Rev Med Virol 2022; 32(2): e2281

    Article  CAS  PubMed  Google Scholar 

  84. Ren XS, Tong Y, Qiu Y, Ye C, Wu N, Xiong XQ, Wang JJ, Han Y, Zhou YB, Zhang F, Sun HJ, Gao XY, Chen Q, Li YH, Kang YM, Zhu GQ. miR155-5p in adventitial fibroblasts-derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensin-converting enzyme expression. J Extracell Vesicles 2020; 9(1): 1698795

    Article  CAS  PubMed  Google Scholar 

  85. Mahmoudi F, Hanachi P, Montaseri A. Extracellular vesicles of immune cells; immunomodulatory impacts and therapeutic potentials. Clin Immunol 2023; 248: 109237

    Article  CAS  PubMed  Google Scholar 

  86. Shen K, Wang XJ, Liu KT, Li SH, Li J, Zhang JX, Wang HT, Hu DH. Effects of exosomes from human adipose-derived mesenchymal stem cells on inflammatory response of mouse RAW264.7 cells and wound healing of full-thickness skin defects in mice Chin J Burns (Zhonghua Shao Shang Za Zhi) 2022; 38(3): 215–226 (in Chinese)

    CAS  Google Scholar 

  87. Zhou Y, Zhao B, Zhang XL, Lu YJ, Lu ST, Cheng J, Fu Y, Lin L, Zhang NY, Li PX, Zhang J, Zhang J. Combined topical and systemic administration with human adipose-derived mesenchymal stem cells (hADSC) and hADSC-derived exosomes markedly promoted cutaneous wound healing and regeneration. Stem Cell Res Ther 2021; 12(1): 257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang Y, Yan J, Liu Y, Chen Z, Li X, Tang L, Li J, Duan M, Zhang G. Human amniotic fluid stem cell-derived exosomes as a novel cell-free therapy for cutaneous regeneration. Front Cell Dev Biol 2021; 9: 685873

    Article  PubMed  PubMed Central  Google Scholar 

  89. Duan M, Zhang Y, Zhang H, Meng Y, Qian M, Zhang G. Epidermal stem cell-derived exosomes promote skin regeneration by downregulating transforming growth factor-β1 in wound healing. Stem Cell Res Ther 2020; 11(1): 452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lv H, Liu H, Sun T, Wang H, Zhang X, Xu W. Exosome derived from stem cell: a promising therapeutics for wound healing. Front Pharmacol 2022; 13: 957771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang M, Wu P, Huang J, Liu W, Qian H, Sun Y, Shi H. Skin cell-derived extracellular vesicles: a promising therapeutic strategy for cutaneous injury. Burns Trauma 2022; 10: tkac037

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lyu L, Cai Y, Zhang G, Jing Z, Liang J, Zhang R, Dang X, Zhang C. Exosomes derived from M2 macrophages induce angiogenesis to promote wound healing. Front Mol Biosci 2022; 9: 1008802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Haraszti RA, Miller R, Dubuke ML, Rockwell HE, Coles AH, Sapp E, Didiot MC, Echeverria D, Stoppato M, Sere YY, Leszyk J, Alterman JF, Godinho B, Hassler MR, McDaniel J, Narain NR, Wollacott R, Wang Y, Shaffer SA, Kiebish MA, DiFiglia M, Aronin N, Khvorova A. Serum deprivation of mesenchymal stem cells improves exosome activity and alters lipid and protein composition. iScience 2019; 16: 230–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bost JP, Saher O, Hagey D, Mamand DR, Liang X, Zheng W, Corso G, Gustafsson O, Görgens A, Smith CE, Zain R, El Andaloussi S, Gupta D. Growth media conditions influence the secretion route and release levels of engineered extracellular vesicles. Adv Healthc Mater 2022; 11(5): 2101658

    Article  CAS  Google Scholar 

  95. Gonzalez-King H, García NA, Ontoria-Oviedo I, Ciria M, Montero JA, Sepúlveda P. Hypoxia Inducible factor-1α potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes. Stem Cells 2017; 35(7): 1747–1759

    Article  CAS  PubMed  Google Scholar 

  96. Ng CY, Kee LT, Al-Masawa ME, Lee QH, Subramaniam T, Kok D, Ng MH, Law JX. Scalable production of extracellular vesicles and its therapeutic values: a review. Int J Mol Sci 2022; 23(14): 7986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cheng Y, Zeng Q, Han Q, Xia W. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein Cell 2019; 10(4): 295–299

    Article  CAS  PubMed  Google Scholar 

  98. Patel DB, Gray KM, Santharam Y, Lamichhane TN, Stroka KM, Jay SM. Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles. Bioeng Transl Med 2017; 2(2): 170–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Linares R, Tan S, Gounou C, Arraud N, Brisson AR. High-speed centrifugation induces aggregation of extracellular vesicles. J Extracell Vesicles 2015; 4(1): 29509

    Article  PubMed  Google Scholar 

  100. Ludwig AK, De Miroschedji K, Doeppner TR, Börger V, Ruesing J, Rebmann V, Durst S, Jansen S, Bremer M, Behrmann E, Singer BB, Jastrow H, Kuhlmann JD, El Magraoui F, Meyer HE, Hermann DM, Opalka B, Raunser S, Epple M, Horn PA, Giebel B. Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales. J Extracell Vesicles 2018; 7(1): 1528109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Arntz OJ, Pieters BCH, van Lent P, Koenders MI, van der Kraan PM, van de Loo FAJ. An optimized method for plasma extracellular vesicles isolation to exclude the copresence of biological drugs and plasma proteins which impairs their biological characterization. PLoS One 2020; 15(7): e0236508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zheng H, Guan S, Wang X, Zhao J, Gao M, Zhang X. Deconstruction of heterogeneity of size-dependent exosome subpopulations from human urine by profiling N-glycoproteomics and phosphoproteomics simultaneously. Anal Chem 2020; 92(13): 9239–9246

    Article  CAS  PubMed  Google Scholar 

  103. Liangsupree T, Multia E, Riekkola ML. Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A 2021; 1636: 461773

    Article  CAS  PubMed  Google Scholar 

  104. Lin S, Yu Z, Chen D, Wang Z, Miao J, Li Q, Zhang D, Song J, Cui D. Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications. Small 2020; 16(9): 1903916

    Article  CAS  Google Scholar 

  105. Sitar S, Kejžar A, Pahovnik D, Kogej K, Tušek-Žnidarič M, Lenassi M, Žagar E. Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation. Anal Chem 2015; 87(18): 9225–9233

    Article  CAS  PubMed  Google Scholar 

  106. Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, Mark MT, Molina H, Martin AB, Bojmar L, Fang J, Rampersaud S, Hoshino A, Matei I, Kenific CM, Nakajima M, Mutvei AP, Sansone P, Buehring W, Wang H, Jimenez JP, Cohen-Gould L, Paknejad N, Brendel M, Manova-Todorova K, Magalhães A, Ferreira JA, Osório H, Silva AM, Massey A, Cubillos-Ruiz JR, Galletti G, Giannakakou P, Cuervo AM, Blenis J, Schwartz R, Brady MS, Peinado H, Bromberg J, Matsui H, Reis CA, Lyden D. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol 2018; 20(3): 332–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen C, Skog J, Hsu CH, Lessard RT, Balaj L, Wurdinger T, Carter BS, Breakefield XO, Toner M, Irimia D. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 2010; 10(4): 505–511

    Article  CAS  PubMed  Google Scholar 

  108. Zhang P, He M, Zeng Y. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip 2016; 16(16): 3033–3042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bohmer N, Demarmels N, Tsolaki E, Gerken L, Keevend K, Bertazzo S, Lattuada M, Herrmann IK. Removal of cells from body fluids by magnetic separation in batch and continuous mode: influence of bead size, concentration, and contact time. ACS Appl Mater Interfaces 2017; 9(35): 29571–29579

    Article  CAS  PubMed  Google Scholar 

  110. Fang X, Chen C, Liu B, Ma Z, Hu F, Li H, Gu H, Xu H. A magnetic bead-mediated selective adsorption strategy for extracellular vesicle separation and purification. Acta Biomater 2021; 124: 336–347

    Article  CAS  PubMed  Google Scholar 

  111. Seo N, Nakamura J, Kaneda T, Tateno H, Shimoda A, Ichiki T, Furukawa K, Hirabayashi J, Akiyoshi K, Shiku H. Distinguishing functional exosomes and other extracellular vesicles as a nucleic acid cargo by the anion-exchange method. J Extracell Vesicles 2022; 11(3): e12205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chattrairat K, Yasui T, Suzuki S, Natsume A, Nagashima K, Iida M, Zhang M, Shimada T, Kato A, Aoki K, Ohka F, Yamazaki S, Yanagida T, Baba Y. All-in-one nanowire assay system for capture and analysis of extracellular vesicles from an ex vivo brain tumor model. ACS Nano 2023; 17(3): 2235–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yasui T, Paisrisarn P, Yanagida T, Konakade Y, Nakamura Y, Nagashima K, Musa M, Thiodorus IA, Takahashi H, Naganawa T, Shimada T, Kaji N, Ochiya T, Kawai T, Baba Y. Molecular profiling of extracellular vesicles via charge-based capture using oxide nanowire microfluidics. Biosens Bioelectron 2021; 194: 113589

    Article  CAS  PubMed  Google Scholar 

  114. Stam J, Bartel S, Bischoff R, Wolters JC. Isolation of extracellular vesicles with combined enrichment methods. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1169: 122604

    Article  CAS  PubMed  Google Scholar 

  115. Onódi Z, Pelyhe C, Terézia Nagy C, Brenner GB, Almási L, Kittel Á, Manček-Keber M, Ferdinandy P, Buzás EI, Giricz Z. Isolation of high-purity extracellular vesicles by the combination of iodixanol density gradient ultracentrifugation and bind-elute chromatography from blood plasma. Front Physiol 2018; 9: 1479

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hettich BF, Ben-Yehuda Greenwald M, Werner S, Leroux JC. Exosomes for wound healing: purification optimization and identification of bioactive components. Adv Sci (Weinh) 2020; 7(23): 2002596

    Article  CAS  PubMed  Google Scholar 

  117. Jin C, Wu P, Li L, Xu W, Qian H. Exosomes: emerging therapy delivery tools and biomarkers for kidney diseases. Stem Cells Int 2021; 2021: 7844455

    Article  PubMed  PubMed Central  Google Scholar 

  118. Singh K, Nalabotala R, Koo KM, Bose S, Nayak R, Shiddiky MJA. Separation of distinct exosome subpopulations: isolation and characterization approaches and their associated challenges. Analyst (Lond) 2021; 146(12): 3731–3749

    Article  CAS  Google Scholar 

  119. Wei Z, Chen Z, Zhao Y, Fan F, Xiong W, Song S, Yin Y, Hu J, Yang K, Yang L, Xu B, Ge J. Mononuclear phagocyte system blockade using extracellular vesicles modified with CD47 on membrane surface for myocardial infarction reperfusion injury treatment. Biomaterials 2021; 275: 121000

    Article  CAS  PubMed  Google Scholar 

  120. Lv Q, Deng J, Chen Y, Wang Y, Liu B, Liu J. Engineered human adipose stem-cell-derived exosomes loaded with miR-21-5p to promote diabetic cutaneous wound healing. Mol Pharm 2020; 17(5): 1723–1733

    Article  CAS  PubMed  Google Scholar 

  121. Shi A, Li J, Qiu X, Sabbah M, Boroumand S, Huang TC, Zhao C, Terzic A, Behfar A, Moran SL. TGF-β loaded exosome enhances ischemic wound healing in vitro and in vivo. Theranostics 2021; 11(13): 6616–6631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Togliatto G, Dentelli P, Rosso A, Lombardo G, Gili M, Gallo S, Gai C, Solini A, Camussi G, Brizzi MF. PDGF-BB carried by endothelial cell-derived extracellular vesicles reduces vascular smooth muscle cell apoptosis in diabetes. Diabetes 2018; 67(4): 704–716

    Article  CAS  PubMed  Google Scholar 

  123. Lou R, Chen J, Zhou F, Wang C, Leung CH, Lin L. Exosome-cargoed microRNAs: Potential therapeutic molecules for diabetic wound healing. Drug Discov Today 2022; 27(10): 103323

    Article  CAS  PubMed  Google Scholar 

  124. Shen J, Zhao X, Zhong Y, Yang P, Gao P, Wu X, Wang X, An W. Exosomal ncRNAs: the pivotal players in diabetic wound healing. Front Immunol 2022; 13: 1005307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu YX, Pu SD, Li X, Yu ZW, Zhang YT, Tong XW, Shan YY, Gao XY. Exosomal ncRNAs: novel therapeutic target and biomarker for diabetic complications. Pharmacol Res 2022; 178: 106135

    Article  CAS  PubMed  Google Scholar 

  126. Matsuzaka Y, Yashiro R. Advances in purification, modification, and application of extracellular vesicles for novel clinical treatments. Membranes (Basel) 2022; 12(12): 1244

    Article  CAS  PubMed  Google Scholar 

  127. Yang C, Luo L, Bai X, Shen K, Liu K, Wang J, Hu D. Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway. Arch Biochem Biophys 2020; 681: 108259

    Article  CAS  PubMed  Google Scholar 

  128. Li M, Qiu L, Hu W, Deng X, Xu H, Cao Y, Xiao Z, Peng L, Johnson S, Alexey L, Kingston PA, Li Q, Zhang Y. Genetically-modified bone mesenchymal stem cells with TGF-beta3 improve wound healing and reduce scar tissue formation in a rabbit model. Exp Cell Res 2018; 367(1): 24–29

    Article  CAS  PubMed  Google Scholar 

  129. Hade MD, Suire CN, Suo Z. An effective peptide-based platform for efficient exosomal loading and cellular delivery of a microRNA. ACS Appl Mater Interfaces 2023; 15(3): 3851–3866

    Article  CAS  PubMed  Google Scholar 

  130. Zhu J, Liu Z, Wang L, Jin Q, Zhao Y, Du A, Ding N, Wang Y, Jiang H, Zhu L. Exosome mimetics-loaded hydrogel accelerates wound repair by transferring functional mitochondrial proteins. Front Bioeng Biotechnol 2022; 10: 866505

    Article  PubMed  PubMed Central  Google Scholar 

  131. Yu M, Liu W, Li J, Lu J, Lu H, Jia W, Liu F. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem Cell Res Ther 2020; 11(1): 350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wu D, Kang L, Tian J, Wu Y, Liu J, Li Z, Wu X, Huang Y, Gao B, Wang H, Wu Z, Qiu G. Exosomes derived from bone mesenchymal stem cells with the stimulation of Fe3O4 nanoparticles and static magnetic field enhance wound healing through upregulated miR-21-5p. Int J Nanomedicine 2020; 15: 7979–7993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang J, Wu H, Peng Y, Zhao Y, Qin Y, Zhang Y, Xiao Z. Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of PI3K/Akt pathways. J Nanobiotechnology 2021; 19(1): 202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Liu W, Li L, Rong Y, Qian D, Chen J, Zhou Z, Luo Y, Jiang D, Cheng L, Zhao S, Kong F, Wang J, Zhou Z, Xu T, Gong F, Huang Y, Gu C, Zhao X, Bai J, Wang F, Zhao W, Zhang L, Li X, Yin G, Fan J, Cai W. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater 2020; 103: 196–212

    Article  CAS  PubMed  Google Scholar 

  135. Gao W, He R, Ren J, Zhang W, Wang K, Zhu L, Liang T. Exosomal HMGB1 derived from hypoxia-conditioned bone marrow mesenchymal stem cells increases angiogenesis via the JNK/HIF-1α pathway. FEBS Open Bio 2021; 11(5): 1364–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhang XF, Wang T, Wang ZX, Huang KP, Zhang YW, Wang GL, Zhang HJ, Chen ZH, Wang CY, Zhang JX, Wang H. Hypoxic ucMSC-secreted exosomal miR-125b promotes endothelial cell survival and migration during wound healing by targeting TP53INP1. Mol Ther Nucleic Acids 2021; 26: 347–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cao T, Xiao D, Ji P, Zhang Z, Cai WX, Han C, Li W, Tao K. Effects of exosomes from hepatocyte growth factor-modified human adipose mesenchymal stem cells on full-thickness skin defect in diabetic mice. Chin J Burns (Zhonghua Shao Shang Za Zhi) 2022; 38(11): 1004–1013 (in Chinese)

    CAS  Google Scholar 

  138. Amengual-Tugores AM, Ráez-Meseguer C, Forteza-Genestra MA, Monjo M, Ramis JM. Extracellular vesicle-based hydrogels for wound healing applications. Int J Mol Sci 2023; 24(4): 4104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen C, Bai X, Ding Y, Lee IS. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater Res 2019; 23(1): 25

    Article  PubMed  PubMed Central  Google Scholar 

  140. Hu M, Hong L, Liu C, Hong S, He S, Zhou M, Huang G, Chen Q. Electrical stimulation enhances neuronal cell activity mediated by Schwann cell derived exosomes. Sci Rep 2019; 9(1): 4206

    Article  PubMed  PubMed Central  Google Scholar 

  141. Klein JD, Wang XH. Electrically stimulated acupuncture increases renal blood flow through exosome-carried miR-181. Am J Physiol Renal Physiol 2018; 315(6): F1542–F1549

    Article  PubMed  PubMed Central  Google Scholar 

  142. Wang J, Pothana K, Chen S, Sawant H, Travers JB, Bihl J, Chen Y. Ultraviolet B irradiation alters the level and miR contents of exosomes released by keratinocytes in diabetic condition. Photochem Photobiol 2022; 98(5): 1122–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ni N, Ma W, Tao Y, Liu J, Hua H, Cheng J, Wang J, Zhou B, Luo D. Exosomal miR-769-5p exacerbates ultraviolet-induced bystander effect by targeting TGFBR1. Front Physiol 2020; 11: 603081

    Article  PubMed  PubMed Central  Google Scholar 

  144. Dong J, Wu B, Tian W. Exosomes derived from hypoxia-preconditioned mesenchymal stem cells (hypoMSCs-Exo): advantages in disease treatment. Cell Tissue Res 2023; 392(3): 621–629

    Article  PubMed  Google Scholar 

  145. Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomedicine 2020; 15: 6917–6934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Maroto R, Zhao Y, Jamaluddin M, Popov VL, Wang H, Kalubowilage M, Zhang Y, Luisi J, Sun H, Culbertson CT, Bossmann SH, Motamedi M, Brasier AR. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J Extracell Vesicles 2017; 6(1): 1359478

    Article  PubMed  PubMed Central  Google Scholar 

  147. Bosch S, de Beaurepaire L, Allard M, Mosser M, Heichette C, Chrétien D, Jegou D, Bach JM. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep 2016; 6(1): 36162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Charoenviriyakul C, Takahashi Y, Nishikawa M, Takakura Y. Preservation of exosomes at room temperature using lyophilization. Int J Pharm 2018; 553(1–2): 1–7

    Article  CAS  PubMed  Google Scholar 

  149. Gupta D, Zickler AM, El Andaloussi S. Dosing extracellular vesicles. Adv Drug Deliv Rev 2021; 178: 113961

    Article  CAS  PubMed  Google Scholar 

  150. Zhou T, He C, Lai P, Yang Z, Liu Y, Xu H, Lin X, Ni B, Ju R, Yi W, Liang L, Pei D, Egwuagu CE, Liu X. miR-204-containing exosomes ameliorate GVHD-associated dry eye disease. Sci Adv 2022; 8(2): eabj9617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Samaeekia R, Rabiee B, Putra I, Shen X, Park YJ, Hematti P, Eslani M, Djalilian AR. Effect of human corneal mesenchymal stromal cell-derived exosomes on corneal epithelial wound healing. Invest Ophthalmol Vis Sci 2018; 59(12): 5194–5200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chen YS, Lin EY, Chiou TW, Harn HJ. Exosomes in clinical trial and their production in compliance with good manufacturing practice. Ci Ji Yi Xue Za Zhi 2020; 32(2): 113–120

    CAS  PubMed  Google Scholar 

  153. Hu Y, Tao R, Chen L, Xiong Y, Xue H, Hu L, Yan C, Xie X, Lin Z, Panayi AC, Mi B, Liu G. Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis. J Nanobiotechnology 2021; 19(1): 150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Li Q, Hu W, Huang Q, Yang J, Li B, Ma K, Wei Q, Wang Y, Su J, Sun M, Cui S, Yang R, Li H, Fu X, Zhang C. miR146a-loaded engineered exosomes released from silk fibroin patch promote diabetic wound healing by targeting IRAK1. Signal Transduct Target Ther 2023; 8(1): 62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hu L, Wang J, Zhou X, Xiong Z, Zhao J, Yu R, Huang F, Zhang H, Chen L. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep 2016; 6(1): 32993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Dinh PC, Paudel D, Brochu H, Popowski KD, Gracieux MC, Cores J, Huang K, Hensley MT, Harrell E, Vandergriff AC, George AK, Barrio RT, Hu S, Allen TA, Blackburn K, Caranasos TG, Peng X, Schnabel LV, Adler KB, Lobo LJ, Goshe MB, Cheng K. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nat Commun 2020; 11(1): 1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu C, Yan X, Zhang Y, Yang M, Ma Y, Zhang Y, Xu Q, Tu K, Zhang M. Oral administration of turmeric-derived exosome-like nanovesicles with anti-inflammatory and pro-resolving bioactions for murine colitis therapy. J Nanobiotechnology 2022; 20(1): 206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhong J, Xia B, Shan S, Zheng A, Zhang S, Chen J, Liang XJ. High-quality milk exosomes as oral drug delivery system. Biomaterials 2021; 277: 121126

    Article  CAS  PubMed  Google Scholar 

  159. Al-Masawa ME, Alshawsh MA, Ng CY, Ng AMH, Foo JB, Vijakumaran U, Subramaniam R, Ghani NAA, Witwer KW, Law JX. Efficacy and safety of small extracellular vesicle interventions in wound healing and skin regeneration: a systematic review and meta-analysis of animal studies. Theranostics 2022; 12(15): 6455–6508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jia Y, Yu L, Ma T, Xu W, Qian H, Sun Y, Shi H. Small extracellular vesicles isolation and separation: current techniques, pending questions and clinical applications. Theranostics 2022; 12(15): 6548–6575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Li MY, Liu LZ, Dong M. Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. Mol Cancer 2021; 20(1): 22

    Article  PubMed  PubMed Central  Google Scholar 

  162. Wang J, Tang W, Yang M, Yin Y, Li H, Hu F, Tang L, Ma X, Zhang Y, Wang Y. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy. Biomaterials 2021; 273: 120784

    Article  CAS  PubMed  Google Scholar 

  163. Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, Naghdi MJ, Sabet S, Khoshbakht MA, Hashemi M, Hushmandi K, Sethi G, Zarrabi A, Kumar AP, Tan SC, Papadakis M, Alexiou A, Islam MA, Mostafavi E, Ashrafizadeh M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol 2022; 15(1): 83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Liang G, Zhu Y, Ali DJ, Tian T, Xu H, Si K, Sun B, Chen B, Xiao Z. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnology 2020; 18(1): 10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wang X, Zhang H, Bai M, Ning T, Ge S, Deng T, Liu R, Zhang L, Ying G, Ba Y. Exosomes serve as nanoparticles to deliver anti-miR-214 to reverse chemoresistance to cisplatin in gastric cancer. Mol Ther 2018; 26(3): 774–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ashrafizadeh M, Delfi M, Hashemi F, Zabolian A, Saleki H, Bagherian M, Azami N, Farahani MV, Sharifzadeh SO, Hamzehlou S, Hushmandi K, Makvandi P, Zarrabi A, Hamblin MR, Varma RS. Biomedical application of chitosan-based nanoscale delivery systems: potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym 2021; 260: 117809

    Article  CAS  PubMed  Google Scholar 

  167. Xu Z, Zeng S, Gong Z, Yan Y. Exosome-based immunotherapy: a promising approach for cancer treatment. Mol Cancer 2020; 19(1): 160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ni C, Fang QQ, Chen WZ, Jiang JX, Jiang Z, Ye J, Zhang T, Yang L, Meng FB, Xia WJ, Zhong M, Huang J. Breast cancer-derived exosomes transmit lncRNA SNHG16 to induce CD73+γδ1 Treg cells. Signal Transduct Target Ther 2020; 5(1): 41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Dou D, Ren X, Han M, Xu X, Ge X, Gu Y, Wang X. Cancer-associated fibroblasts-derived exosomes suppress immune cell function in breast cancer via the miR-92/PD-L1 pathway. Front Immunol 2020; 11: 2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Xin W, Qin Y, Lei P, Zhang J, Yang X, Wang Z. From cerebral ischemia towards myocardial, renal, and hepatic ischemia: exosomal miRNAs as a general concept of intercellular communication in ischemia-reperfusion injury. Mol Ther Nucleic Acids 2022; 29: 900–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zou Y, Li L, Li Y, Chen S, Xie X, Jin X, Wang X, Ma C, Fan G, Wang W. Restoring cardiac functions after myocardial infarction-ischemia/reperfusion via an exosome anchoring conductive hydrogel. ACS Appl Mater Interfaces 2021; 13(48): 56892–56908

    Article  CAS  PubMed  Google Scholar 

  172. Chen W, Wang H, Zhu Z, Feng J, Chen L. Exosome-shuttled circSHOC2 from IPASs regulates neuronal autophagy and ameliorates ischemic brain injury via the miR-7670-3p/SIRT1 axis. Mol Ther Nucleic Acids 2020; 22: 657–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yang Z, Gao Z, Yang Z, Zhang Y, Chen H, Yang X, Fang X, Zhu Y, Zhang J, Ouyang F, Li J, Cai G, Li Y, Lin X, Ni R, Xia C, Wang R, Shi X, Chu L. Lactobacillus plantarum-derived extracellular vesicles protect against ischemic brain injury via the microRNA-101a-3p/c-Fos/TGF-β axis. Pharmacol Res 2022; 182: 106332

    Article  CAS  PubMed  Google Scholar 

  174. Kim S, Lee SA, Yoon H, Kim MY, Yoo JK, Ahn SH, Park CH, Park J, Nam BY, Park JT, Han SH, Kang SW, Kim NH, Kim HS, Han D, Yook JI, Choi C, Yoo TH. Exosome-based delivery of super-repressor IκBα ameliorates kidney ischemia-reperfusion injury. Kidney Int 2021; 100(3): 570–584

    Article  CAS  PubMed  Google Scholar 

  175. Wang C, Xu M, Fan Q, Li C, Zhou X. Therapeutic potential of exosome-based personalized delivery platform in chronic inflammatory diseases. Asian J Pharm Sci 2023; 18(1): 100772

    Article  PubMed  Google Scholar 

  176. Ocansey DKW, Zhang L, Wang Y, Yan Y, Qian H, Zhang X, Xu W, Mao F. Exosome-mediated effects and applications in inflammatory bowel disease. Biol Rev Camb Philos Soc 2020; 95(5): 1287–1307

    Article  PubMed  PubMed Central  Google Scholar 

  177. Noonin C, Thongboonkerd V. Exosome-inflammasome crosstalk and their roles in inflammatory responses. Theranostics 2021; 11(9): 4436–4451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Zeng X, Zhang YD, Ma RY, Chen YJ, Xiang XM, Hou DY, Li XH, Huang H, Li T, Duan CY. Activated Drp1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome axis. Mil Med Res 2022; 9(1): 25

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Wu Y, Li J, Zeng Y, Pu W, Mu X, Sun K, Peng Y, Shen B. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies. Int J Oral Sci 2022; 14(1): 40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Bu T, Li Z, Hou Y, Sun W, Zhang R, Zhao L, Wei M, Yang G, Yuan L. Exosome-mediated delivery of inflammation-responsive Il-10 mRNA for controlled atherosclerosis treatment. Theranostics 2021; 11(20): 9988–10000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Pei W, Li X, Bi R, Zhang X, Zhong M, Yang H, Zhang Y, Lv K. Exosome membrane-modified M2 macrophages targeted nanomedicine: treatment for allergic asthma. J Control Release 2021; 338: 253–267

    Article  CAS  PubMed  Google Scholar 

  182. Long X, Yao X, Jiang Q, Yang Y, He X, Tian W, Zhao K, Zhang H. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury. J Neuroinflammation 2020; 17(1): 89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Deng F, Yan J, Lu J, Luo M, Xia P, Liu S, Wang X, Zhi F, Liu D. M2 macrophage-derived exosomal miR-590-3p attenuates DSS-induced mucosal damage and promotes epithelial repair via the LATS1/YAP/β-catenin signalling axis. J Crohn’s Colitis 2021; 15(4): 665–677

    Article  Google Scholar 

  184. Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms. Mol Ther 2021; 29(1): 13–31

    Article  CAS  PubMed  Google Scholar 

  185. Kang Y, Xu C, Meng L, Dong X, Qi M, Jiang D. Exosome-functionalized magnesium-organic framework-based scaffolds with osteogenic, angiogenic and anti-inflammatory properties for accelerated bone regeneration. Bioact Mater 2022; 18: 26–41

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Bruno S, Pasquino C, Herrera Sanchez MB, Tapparo M, Figliolini F, Grange C, Chiabotto G, Cedrino M, Deregibus MC, Tetta C, Camussi G. HLSC-derived extracellular vesicles attenuate liver fibrosis and inflammation in a murine model of non-alcoholic steatohepatitis. Mol Ther 2020; 28(2): 479–489

    Article  CAS  PubMed  Google Scholar 

  187. Budden CF, Gearing LJ, Kaiser R, Standke L, Hertzog PJ, Latz E. Inflammasome-induced extracellular vesicles harbour distinct RNA signatures and alter bystander macrophage responses. J Extracell Vesicles 2021; 10(10): e12127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Haghighitalab A, Dominici M, Matin MM, Shekari F, Ebrahimi Warkiani M, Lim R, Ahmadiankia N, Mirahmadi M, Bahrami AR, Bidkhori HR. Extracellular vesicles and their cells of origin: open issues in autoimmune diseases. Front Immunol 2023; 14: 1090416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kim S, Maeng JY, Hyun SJ, Sohn HJ, Kim SY, Hong CH, Kim TG. Extracellular vesicles from human umbilical cord blood plasma modulate interleukin-2 signaling of T cells to ameliorate experimental autoimmune encephalomyelitis. Theranostics 2020; 10(11): 5011–5028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Casella G, Rasouli J, Boehm A, Zhang W, Xiao D, Ishikawa LLW, Thome R, Li X, Hwang D, Porazzi P, Molugu S, Tang HY, Zhang GX, Ciric B, Rostami A. Oligodendrocyte-derived extracellular vesicles as antigen-specific therapy for autoimmune neuroinflammation in mice. Sci Transl Med 2020; 12(568): eaba0599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Tang TT, Wang B, Lv LL, Liu BC. Extracellular vesicle-based nanotherapeutics: emerging frontiers in anti-inflammatory therapy. Theranostics 2020; 10(18): 8111–8129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q, Evans R, Fissell WH, Patton JG, Rome LH, Burnette DT, Coffey RJ. Reassessment of exosome composition. Cell 2019; 177(2): 428–445.e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 82060245 and 82260254); Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, under Contract Nos. R21 AI152832 and R03 AI165170 (PI: Yuanyuan Zhang).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Liu, Anyong Yu or Yuanyuan Zhang.

Ethics declarations

Conflicts of interest Tianjing Sun, Mo Li, Qi Liu, Anyong Yu, Kun Chen, Jianxing Ma, Sean Murphy, Patrick Michael McNutt, and Yuanyuan Zhang declare that they have no conflict of interest.

This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Li, M., Liu, Q. et al. Insights into optimizing exosome therapies for acute skin wound healing and other tissue repair. Front. Med. (2024). https://doi.org/10.1007/s11684-023-1031-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11684-023-1031-9

Keywords

Navigation