Skip to main content
Log in

Perspectives and Challenges on the Potential Use of Exosomes in Bioartificial Pancreas Engineering

  • 50th Anniversary Reviews
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Exosomes are enclosed within a single outer membrane and exemplify a specific subtype of secreted vesicles. Exosomes transfer signalling molecules, including microRNAs (miRNAs), messenger RNA (mRNA), fatty acids, proteins, and growth factors, making them a promising therapeutic tool. In routine bioartificial pancreas fabrication, cells are immobilized in polymeric hydrogels lacking attachment capability for cells and other biological cues. In this opinion article, we will discuss the potential role that exosomes and their specific biofactors may play to improve and sustain the function of this bioartificial construct. We will particularly discuss the challenges associated with their isolation and characterization. Since stem cells are an attractive source of exosomes, we will present the advantages of using exosomes in place of stem cells in medical devices including the bioartificial pancreas. We will provide literature evidence of active biofactors in exosomes to support their incorporation in the matrix of encapsulated islets. This will include their potential beneficial effect on hypoxic injury to encapsulated islets. In summary, we propose that the biofactors contained in secreted exosomes have significant potential to enhance the performance of islets encapsulated in polymeric material hydrogels with perm-selective properties to provide immunoisolation for islet transplants as an insulin delivery platform in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Aslan, C., S. H. Kiaie, N. M. Zolbanin, P. Lotfinejad, R. Ramezani, F. Kashanchi, and R. Jafari. Exosomes for mRNA delivery: a novel biotherapeutic strategy with hurdles and hope. BMC Biotechnol. 21:20, 2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bagno, L., K. E. Hatzistergos, W. Balkan, and J. M. Hare. Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges. Mol Ther. 26(7):1610–1623, 2018. https://doi.org/10.1016/j.ymthe.2018.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Balla, T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol. Rev. 93(3):1019–1137, 2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bharadwaj, S., G. Liu, Y. Shi, C. Markert, K. E. Andersson, A. Atala, and Y. Zhang. Characterization of urine-derived stem cells obtained from upper urinary tract for use in cell-based urological tissue engineering. Tissue Eng. Part A. 17(15–16):2123–2132, 2011

    Article  PubMed  Google Scholar 

  5. Blanchard, N., D. Lankar, F. Faure, A. Regnault, C. Dumont, G. Raposo, and C. Hivroz. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J. Immunol. 168(7):3235–3241, 2002

    Article  CAS  PubMed  Google Scholar 

  6. Chahar, H. S., X. Bao, and A. Casola. Exosomes and their role in the life cycle and pathogenesis of RNA viruses. Viruses. 7(6):3204–3225, 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, T. S., R. C. Lai, M. M. Lee, A. B. Choo, C. N. Lee, and S. K. Lim. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 38(1):215–224, 2010

    Article  CAS  PubMed  Google Scholar 

  8. Colao, I. L., R. Corteling, D. Bracewell, and I. Wall. Manufacturing exosomes: a promising therapeutic platform. Trends Mol. Med. 24(3):242–256, 2018

    Article  CAS  PubMed  Google Scholar 

  9. Coughlan, C., K. D. Bruce, O. Burgy, T. D. Boyd, C. R. Michel, J. E. Garcia-Perez, V. Adame, P. Anton, B. M. Bettcher, H. J. Chial, M. Königshoff, E. Hsieh, M. Graner, and H. Potter. Exosome Isolation by Ultracentrifugation and Precipitation and Techniques for Downstream Analyses. Curr. Protoc. Cell. Biol.88(1):e110, 2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Denzer, K., M. J. Kleijmeer, H. F. Heijnen, W. Stoorvogel, and H. J. Geuze. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J. Cell Sci. 113(Pt 19):3365–3374, 2000

    Article  CAS  PubMed  Google Scholar 

  11. Doyle, L. M., and M. Z. Wang. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 8(7):727, 2019

    Article  CAS  PubMed Central  Google Scholar 

  12. Emamaullee, J. A., A. M. Shapiro, R. V. Rajotte, G. Korbutt, and J. F. Elliott. Neonatal porcine islets exhibit natural resistance to hypoxia-induced apoptosis. Transplantation. 82(7):945–952, 2006

    Article  PubMed  Google Scholar 

  13. Enck, K., R. Tamburrini, C. Deborah, C. Gazia, A. Jost, F. Khalil, A. Alwan, G. Orlando, and E. C. Opara. Effect of alginate matrix engineered to mimic the pancreatic microenvironment on encapsulated islet function. Biotechnol. Bioeng. 118(3):1177–1185, 2021

    Article  CAS  PubMed  Google Scholar 

  14. Escola, J. M., M. J. Kleijmeer, W. Stoorvogel, J. M. Griffith, O. Yoshie, and H. J. Geuze. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem. 273(32):20121–20127, 1998

    Article  CAS  PubMed  Google Scholar 

  15. Gamble, A., R. Pawlick, A. R. Pepper, A. Bruni, A. Adesida, P. A. Senior, G. S. Korbutt, and A. Shapiro. Improved islet recovery and efficacy through co-culture and co-transplantation of islets with human adipose-derived mesenchymal stem cells. PLoS ONE.13(11):e0206449, 2018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Geuze, H. J. The role of endosomes and lysosomes in MHC class II functioning. Immunol. Today. 19(6):282–287, 1998

    Article  CAS  PubMed  Google Scholar 

  17. Heldring, N., I. Mäger, M. J. Wood, K. Le Blanc, and S. E. Andaloussi. Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Hum. Gene Ther. 26(8):506–517, 2015

    Article  CAS  PubMed  Google Scholar 

  18. Hong, P., S. Koza, and E. S. Bouvier. Size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J. Liq. Chromatogr. Relat. Technol. 35(20):2923–2950, 2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ikonen, E. Roles of lipid rafts in membrane transport. Curr. Opin. Cell Biol. 13(4):470–477, 2001

    Article  CAS  PubMed  Google Scholar 

  20. Jan, A. T., S. Rahman, S. Khan, S. A. Tasduq, and I. Choi. Biology, pathophysiological role, and clinical implications of exosomes: a critical appraisal. Cells. 8(2):99, 2019

    Article  CAS  PubMed Central  Google Scholar 

  21. Jung, M. K., and J. Y. Mun. Sample preparation and imaging of exosomes by transmission electron microscopy. J. Vis. Exp. 131:56482, 2018

    Google Scholar 

  22. Kalluri, R., and V. S. LeBleu. The biology, function, and biomedical applications of exosomes. Science. 367(6478):6977, 2020

    Article  CAS  Google Scholar 

  23. Kim, W., Y. Gwon, S. Park, H. Kim, and J. Kim. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact Mater. 19:50–74, 2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kleijmeer, M., G. Ramm, D. Schuurhuis, J. Griffith, M. Rescigno, P. Ricciardi-Castagnoli, A. Y. Rudensky, F. Ossendorp, C. J. Melief, W. Stoorvogel, and H. J. Geuze. Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J. Cell Biol. 155(1):53–63, 2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lai, R. C., S. S. Tan, B. J. Teh, S. K. Sze, F. Arslan, D. P. de Kleijn, A. Choo, and S. K. Lim. Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. Int. J. Proteomics. 1:971907, 2012

    Google Scholar 

  26. Li, P., M. Kaslan, S. H. Lee, J. Ya, and Z. Gao. Progress in exosome isolation techniques. Theranostics. 7(3):789–804, 2017. https://doi.org/10.7150/thno.18133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lim, F., and A. M. Sun. Microencapsulated islets as bioartificial endocrine pancreas. Science. 210(4472):908–910, 1980

    Article  CAS  PubMed  Google Scholar 

  28. Liu, J., F. Jiang, Y. Jiang, Y. Wang, Z. Li, X. Shi, Y. Zhu, H. Wang, and Z. Zhang. Roles of exosomes in ocular diseases. Int. J. Nanomed. 15:10519–10538, 2020

    Article  CAS  Google Scholar 

  29. Llacua, A., B. J. de Haan, S. A. Smink, and P. de Vos. Extracellular matrix components supporting human islet function in alginate-based immunoprotective microcapsules for treatment of diabetes. J. Biomed. Mater. Res. Part A. 104(7):1788–1796, 2016

    Article  CAS  Google Scholar 

  30. Lou, G., Z. Chen, M. Zheng, and Y. Liu. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp. Mol. Med.49(6):e346, 2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ludwig, N., T. L. Whiteside, and T. E. Reichert. Challenges in exosome isolation and analysis in health and disease. Int. J. Mol. Sci. 20(19):4684, 2019

    Article  CAS  PubMed Central  Google Scholar 

  32. McQuilling, J. P., S. Sittadjody, S. Pendergraft, A. C. Farney, and E. C. Opara. Applications of particulate oxygen-generating substances (POGS) in the bioartificial pancreas. Biomater. Sci. 5(12):2437–2447, 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mendt, M., S. Kamerkar, H. Sugimoto, K. M. McAndrews, C. C. Wu, M. Gagea, S. Yang, E. Blanko, Q. Peng, X. Ma, J. R. Marszalek, A. Maitra, C. Yee, K. Rezvani, E. Shpall, V. S. LeBleu, and R. Kalluri. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight.3(8):e99263, 2018

    Article  PubMed Central  Google Scholar 

  34. Opara, A., A. Jost, S. Dagogo-Jack, and E. C. Opara. Islet cell encapsulation - application in diabetes treatment. Exp. Boil. Med. (Maywood). 246(24):2570–2578, 2021

    Article  CAS  Google Scholar 

  35. Pessolano, E., R. V. Bizzarro, P. Franco, I. Marco, F. Petrella, A. Porta, A. Tosco, L. Parente, M. Perretti, and A. Petrella. Annexin A1 contained in extracellular vesicles promotes the activation of keratinocytes by mesoglycan effects: an autocrine loop through FPRs. Cells. 8(7):753, 2019

    Article  CAS  PubMed Central  Google Scholar 

  36. Peters, P. J., J. Borst, V. Oorschot, M. Fukuda, O. Krähenbühl, J. Tschopp, J. W. Slot, and H. J. Geuze. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J. Exp. Med. 173(5):1099–1109, 1991

    Article  CAS  PubMed  Google Scholar 

  37. Rabesandratana, H., J. P. Toutant, H. Reggio, and M. Vidal. Decay-accelerating factor (CD55) and membrane inhibitor of reactive lysis (CD59) are released within exosomes during In vitro maturation of reticulocytes. Blood. 91(7):2573–2580, 1998

    Article  CAS  PubMed  Google Scholar 

  38. Rahman, M. J., D. Regn, R. Bashratyan, and Y. D. Dai. Exosomes released by islet-derived mesenchymal stem cells trigger autoimmune responses in NOD mice. Diabetes. 63(3):1008–1020, 2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Raposo, G., H. W. Nijman, W. Stoorvogel, R. Liejendekker, C. V. Harding, C. J. Melief, and H. J. Geuze. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183(3):1161–1172, 1996

    Article  CAS  PubMed  Google Scholar 

  40. Saeedi, P., I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A. A. Motala, K. Ogurtsova, J. E. Shaw, D. Bright, R. Williams, and I. D. F. DiabetesAtlasCommittee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas 9th edition. Diabetes Res. Clin. Pract. 157, 107843, 2019

    Article  PubMed  Google Scholar 

  41. Sidhom, K., P. O. Obi, and A. Saleem. A review of exosomal isolation methods: is size exclusion chromatography the best option? Int. J. Mol. Sci. 21(18):6466, 2020

    Article  CAS  PubMed Central  Google Scholar 

  42. Stinchcombe, J. C., and G. M. Griffiths. Regulated secretion from hemopoietic cells. J. Cell Biol. 147(1):1–6, 1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Théry, C., A. Regnault, J. Garin, J. Wolfers, L. Zitvogel, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell Biol. 147(3):599–610, 1999

    Article  PubMed  PubMed Central  Google Scholar 

  44. Théry, C., M. Boussac, P. Véron, P. Ricciardi-Castagnoli, G. Raposo, J. Garin, and S. Amigorena. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol. Baltimore. Md. 166(12):7309–7318, 2001

    Google Scholar 

  45. Vidal, M., P. Mangeat, and D. Hoekstra. Aggregation reroutes molecules from a recycling to a vesicle-mediated secretion pathway during reticulocyte maturation. J. Cell Sci. 110(Pt 16):1867–1877, 1997

    Article  CAS  PubMed  Google Scholar 

  46. Wu, R., M. Soland, G. Liu, Y. Shi, C. Zhang, Y. Tang, G. Almeida-Porada, and Y. Zhang. Functional characterization of the immunomodulatory properties of human urine-derived stem cells. Transl. Androl. Urol. 10(9):3566–3578, 2021

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wubbolts, R., M. Fernandez-Borja, L. Oomen, D. Verwoerd, H. Janssen, J. Calafat, A. Tulp, S. Dusseljee, and J. Neefjes. Direct vesicular transport of MHC class II molecules from lysosomal structures to the cell surface. J. Cell Biol. 135(3):611–622, 1996

    Article  CAS  PubMed  Google Scholar 

  48. Yang, Y., Y. Hong, E. Cho, G. B. Kim, and I. S. Kim. Extracellular vesicles as a platform for membrane-associated therapeutic protein delivery. J. Extracell. Vesicles. 7(1):1440131, 2018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yoshioka, Y., Y. Konishi, N. Kosaka, T. Katsuda, T. Kato, and T. Ochiya. Comparative marker analysis of extracellular vesicles in different human cancer types. J. Extracell. Vesicles. 2013. https://doi.org/10.3402/jev.v2i0.20424

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zaborowski, M. P., L. Balaj, X. O. Breakefield, and C. P. Lai. Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience. 65(8):783–797, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zitvogel, L., A. Regnault, A. Lozier, J. Wolfers, C. Flament, D. Tenza, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 4(5):594–600, 1998

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Wake Forest University Centre for Functional Materials.

Author Contributions

PC generated the manuscript draft with formatting; AA performed the experiments and provided the data shown in the manuscript and also assisted with manuscript writing; FK helped to design and supervise the experiments and helped with data interpretation; YZ performed the characterization of the urine-derived stem cells and provided guidance on the culture and use of the cells and helped with the revision of the manuscript; ECO conceived the idea and reviewed and edited the manuscript.

Conflict of interest

The authors disclose no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel C. Opara.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canning, P., Alwan, A., Khalil, F. et al. Perspectives and Challenges on the Potential Use of Exosomes in Bioartificial Pancreas Engineering. Ann Biomed Eng 50, 1177–1186 (2022). https://doi.org/10.1007/s10439-022-03004-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03004-0

Keywords

Navigation