Skip to main content
Log in

Crk-associated substrate, vascular smooth muscle and hypertension

  • Review
  • Published:
Frontiers of Medicine in China Aims and scope Submit manuscript

Abstract

Hypertension is characterized by vascular smooth muscle constriction and vascular remodeling involving cell migration, hypertrophy and growth. Crk-associated substrate (CAS), the first discovered member of the adapter protein CAS family, has been shown to be a critical cellular component that regulates various smooth muscle functions. In this review, the molecular structure and protein interactions of the CAS family members are summarized. Evidence for the role of CAS in the regulation of vascular smooth muscle contractility is presented. Contraction stimulation induces CAS phosphorylation on Tyr-410 in arterial smooth muscle, creating the binding site for the Src homology (SH) 2/SH3 protein CrkII, which activates neuronal Wiskott-Aldrich syndrome protein (N-WASP)-mediated actin assembly and force development. The functions of CAS in cell migration, hypertrophy and growth are also summarized. Abelson tyrosine kinase (Abl), c-Src, focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (PYK2), protein tyrosine phosphatase-proline, glutamate, serine and threonine sequence protein (PTP-PEST) and SHP-2 have been documented to coordinate the phosphorylation and dephosphorylation of CAS. The downstream signaling partners of CAS in the context of cell motility, hypertrophy, survival and growth are also discussed. These new findings establish the important role of CAS in the modulation of vascular smooth muscle functions. Furthermore, the upstream regulators of CAS may be new biologic targets for the development of more effective and specific treatment of cardiovascular diseases such as hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Neill G M, Fashena S J, Golemis E A. Integrin signalling: a new Cas(t) of characters enters the stage. Trends Cell Biol, 2000, 10(3): 111–119

    Article  PubMed  CAS  Google Scholar 

  2. Defilippi P, Di S P, Cabodi S. p130Cas: a versatile scaffold in signaling networks. Trends Cell Biol, 2006, 16(5): 257–263

    Article  PubMed  CAS  Google Scholar 

  3. Anfinogenova Y, Wang R, Li Q F, Spinelli A M, Tang D D. Abl silencing inhibits CAS-mediated process and constriction in resistance arteries. Circ Res, 2007, 101(4): 420–428

    Article  PubMed  CAS  Google Scholar 

  4. Ogden K, Thompson J M, Hickner Z, Huang T, Tang D D, Watts S W. A new signaling paradigm for serotonin: use of Crk-associated substrate in arterial contraction. Am J Physiol Heart Circ Physiol, 2006, 291(6): H2857–H2863

    Article  PubMed  CAS  Google Scholar 

  5. Tang D D, Tan J. Role of Crk-Associated Substrate in the Regulation of Vascular Smooth Muscle Contraction. Hypertension, 2003, 42: 858–863

    Article  PubMed  CAS  Google Scholar 

  6. Tang D D, Tan J. Downregulation of profilin with antisense oligodeoxynucleotides inhibits force development during stimulation of smooth muscle. Am J Physiol Heart Circ Physiol, 2003, 285: H1528–H1536

    PubMed  CAS  Google Scholar 

  7. Kanner S B, Reynolds A B, Wang H C, Vines R R, Parsons J T. The SH2 and SH3 domains of pp60src direct stable association with tyrosine phosphorylated proteins p130 and p110. EMBO J, 1991, 10(7): 1689–1698

    PubMed  CAS  Google Scholar 

  8. Sakai R, Iwamatsu A, Hirano N, Ogawa S, Tanaka T, Mano H, Yazaki Y, Hirai H. A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation-dependent manner. EMBO J, 1994, 13(16): 3748–3756

    PubMed  CAS  Google Scholar 

  9. Singh M K, Dadke D, Nicolas E, Serebriiskii I G, Apostolou S, Canutescu A, Egleston B L, Golemis E A. A novel Cas family member, HEPL, regulates FAK and cell spreading. Mol Biol Cell, 2008, 19(4): 1627–1636

    Article  PubMed  CAS  Google Scholar 

  10. Tang D D, Anfinogenova Y. Physiologic properties and regulation of the actin cytoskeleton in vascular smooth muscle. J Cardiovasc Pharmaco Ther, 2008, 13(2): 130–140

    Article  CAS  Google Scholar 

  11. Wang R, Li Q F, Anfinogenova Y, Tang D D. Dissociation of Crk-associated substrate from the vimentin network is regulated by p21-activated kinase on ACh activation of airway smooth muscle. Am J Physiol Lung Cell Mol Physiol, 2007, 292(1): L240–L248

    Article  PubMed  CAS  Google Scholar 

  12. Li Q F, Spinelli A M, Wang R, Anfinogenova Y, Singer H A, Tang D D. Critical role of vimentin phosphorylation at Ser-56 by p21-activated kinase in vimentin cytoskeleton signaling. J Biol Chem, 2006, 281(45): 34716–34724

    Article  PubMed  CAS  Google Scholar 

  13. Tang D D, Gunst S J. The small GTPase Cdc42 regulates actin polymerization and tension development during contractile stimulation of smooth muscle. J Biol Chem, 2004, 279(50): 51722–51728

    Article  PubMed  CAS  Google Scholar 

  14. Tang D D, Zhang W, Gunst S J. The adapter protein CrkII regulates neuronal Wiskott-Aldrich syndrome protein, actin polymerization, and tension development during contractile stimulation of smooth muscle. J Biol Chem, 2005, 280(24): 23380–23389

    Article  PubMed  CAS  Google Scholar 

  15. Shin N Y, Dise R S, Schneider-Mergener J, Ritchie M D, Kilkenny D M, Hanks S K. Subsets of the major tyrosine phosphorylation sites in Crk-associated substrate (CAS) are sufficient to promote cell migration. J Biol Chem, 2004, 279(37): 38331–38337

    Article  PubMed  CAS  Google Scholar 

  16. Takahashi T, Kawahara Y, Taniguchi T, Yokoyama M. Tyrosine phosphorylation and association of p130Cas and c-Crk II by ANG II in vascular smooth muscle cells. Am J Physiol, 1998, 274(4 Pt 2): H1059–H1065

    PubMed  CAS  Google Scholar 

  17. Somlyo A V, Khromov A S, Webb M R, Ferenczi M A, Trentham D R, He Z H, Sheng S, Shao Z, Somlyo A P. Smooth muscle myosin: regulation and properties. Philos Trans R Soc Lond B Biol Sci, 2004, 359(1452): 1921–1930

    Article  PubMed  CAS  Google Scholar 

  18. Zhang W, Wu Y, Du L, Tang D D, Gunst S J. Activation of the Arp2/3 complex by N-WASp is required for actin polymerization and contraction in smooth muscle. Am J Physiol Cell Physiol, 2005, 288(5): C1145–C1160

    Article  PubMed  CAS  Google Scholar 

  19. Barany M, Barron J T, Gu L, Barany K. Exchange of the actin-bound nucleotide in intact arterial smooth muscle. J Biol Chem, 2001, 276(51): 48398–48403

    PubMed  CAS  Google Scholar 

  20. Chen X, Pavlish K, Zhang H Y, Benoit J N. Effects of chronic portal hypertension on agonist-induced actin polymerization in small mesenteric arteries. Am J Physiol Heart Circ Physiol, 2006, 290(5): H1915–H1921

    Article  PubMed  CAS  Google Scholar 

  21. Meeks M K, Ripley M L, Jin Z, Rembold C M. Heat shock protein 20-mediated force suppression in forskolin-relaxed swine carotid artery. Am J Physiol Cell Physiol, 2005, 288(3): C633–C639

    Article  PubMed  CAS  Google Scholar 

  22. Tang D D, Gunst S J. Selected contribution: roles of focal adhesion kinase and paxillin in the mechanosensitive regulation of myosin phosphorylation in smooth muscle. J Appl Physiol, 2001, 91(3): 1452–1459

    PubMed  CAS  Google Scholar 

  23. Tang D D, Gunst S J. Depletion of focal adhesion kinase by antisense depresses contractile activation of smooth muscle. Am J Physiol Cell Physiol, 2001, 280(4): C874–C883

    PubMed  CAS  Google Scholar 

  24. Tang D D, Turner C E, Gunst S J. Expression of non-phosphorylatable paxillin mutants in canine tracheal smooth muscle inhibits tension development. J Physiol, 2003, 553(1): 21–35

    Article  PubMed  CAS  Google Scholar 

  25. Kyaw M, Yoshizumi M, Tsuchiya K, Kagami S, Izawa Y, Fujita Y, Ali N, Kanematsu Y, Toida K, Ishimura K, Tamaki T. Src and Cas are essentially but differentially involved in angiotensin II-stimulated migration of vascular smooth muscle cells via extracellular signal-regulated kinase 1/2 and c-Jun NH2-terminal kinase activation. Mol Pharmacol, 2004, 65(4): 832–841

    Article  PubMed  CAS  Google Scholar 

  26. Ojaniemi M, Vuori K. Epidermal growth factor modulates tyrosine phosphorylation of p130Cas. Involvement of phosphatidylinositol 3′-kinase and actin cytoskeleton. J Biol Chem, 1997, 272(41): 25993–25998

    Article  PubMed  CAS  Google Scholar 

  27. Cho S Y, Klemke R L. Purification of pseudopodia from polarized cells reveals redistribution and activation of Rac through assembly of a CAS/Crk scaffold. J Cell Biol, 2002, 156(4): 725–736

    Article  PubMed  CAS  Google Scholar 

  28. Chodniewicz D, Klemke R L. Regulation of integrin-mediated cellular responses through assembly of a CAS/Crk scaffold. Biochim Biophys Acta, 2004, 1692(2–3): 63–76

    PubMed  CAS  Google Scholar 

  29. Pollard T D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct, 2007, 36: 451–477

    Article  PubMed  CAS  Google Scholar 

  30. Gunst S J, Tang D D. The contractile apparatus and mechanical properties of airway smooth muscle. Eur Respir J, 2000, 15(3): 600–616

    Article  PubMed  CAS  Google Scholar 

  31. Gunst S J, Tang D D, Opazo S A. Cytoskeletal remodeling of the airway smooth muscle cell: a mechanism for adaptation to mechanical forces in the lung. Respir Physiol Neurobiol, 2003, 137(2–3): 151–168

    Article  PubMed  Google Scholar 

  32. Gerthoffer W T. Actin cytoskeletal dynamics in smooth muscle contraction. Can J Physiol Pharmacol, 2005, 83(10): 851–856

    Article  PubMed  CAS  Google Scholar 

  33. Gerthoffer W T, Gunst S J. Invited review: focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J Appl Physiol, 2001, 91(2): 963–972

    PubMed  CAS  Google Scholar 

  34. Kiselar J G, Mahaffy R, Pollard T D, Almo S C, Chance M R. Visualizing Arp2/3 complex activation mediated by binding of ATP and WASp using structural mass spectrometry. Proc Natl Acad Sci U S A, 2007, 104(5): 1552–1557

    Article  PubMed  CAS  Google Scholar 

  35. Langevin H M, Churchill D L, Cipolla M J. Mechanical signaling through connective tissue: a mechanism for the therapeutic effect of acupuncture. FASEB J, 2001, 15(12): 2275–2282

    Article  PubMed  CAS  Google Scholar 

  36. Herrera A M, McParland B E, Bienkowska A, Tait R, Pare P D, Seow C Y. ’Sarcomeres’ of smooth muscle: functional characteristics and ultrastructural evidence. J Cell Sci, 2005, 118(Pt 11): 2381–2392

    Article  PubMed  CAS  Google Scholar 

  37. Herrera A M, Martinez E C, Seow C Y. Electron microscopic study of actin polymerization in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol, 2004, 286(6): L1161–L1168

    Article  PubMed  CAS  Google Scholar 

  38. Wang L, Pare P D, Seow C Y. Effects of length oscillation on the subsequent force development in swine tracheal smooth muscle. J Appl Physiol, 2000, 88(6): 2246–2250

    PubMed  CAS  Google Scholar 

  39. Murphy R A, Rembold C M. The latch-bridge hypothesis of smooth muscle contraction. Can J Physiol Pharmacol, 2005, 83(10): 857–864

    Article  PubMed  CAS  Google Scholar 

  40. Rembold C M. Force suppression and the crossbridge cycle in swine carotid artery. Am J Physiol Cell Physiol, 2007, 293(3): C1003–C1009

    Article  PubMed  CAS  Google Scholar 

  41. Rembold C M, Tejani A D, Ripley M L, Han S. Paxillin phosphorylation, actin polymerization, noise temperature, and the sustained phase of swine carotid artery contraction. Am J Physiol Cell Physiol, 2007, 293(3): C993–C1002

    Article  PubMed  CAS  Google Scholar 

  42. Opazo S A, Zhang W, Wu Y, Turner C E, Tang D D, Gunst S J. Tension development during contractile stimulation of smooth muscle requires recruitment of paxillin and vinculin to the membrane. Am J Physiol Cell Physiol, 2004, 286(2): C433–C447

    Article  Google Scholar 

  43. Tang D D. Invited review: intermediate filaments in smooth muscle. Am J Physiol Cell Physiol, 2008, 294(4): C869–C878

    Article  PubMed  CAS  Google Scholar 

  44. Wang R, Li Q, Tang D D. Role of vimentin in smooth muscle force development. Am J Physiol Cell Physiol, 2006, 291(3): C483–C489

    Article  PubMed  CAS  Google Scholar 

  45. Tang D D, Bai Y, Gunst S J. Silencing of p21-activated kinase attenuates vimentin phosphorylation on Ser-56 and reorientation of the vimentin network during stimulation of smooth muscle cells by 5-hydroxytryptamine. Biochem J, 2005, 388 (Pt 3): 773–783

    PubMed  CAS  Google Scholar 

  46. Chan W, Kozma R, Yasui Y, Inagaki M, Leung T, Manser E, Lim L. Vimentin intermediate filament reorganization by Cdc42: involvement of PAK and p70 S6 kinase. Eur J Cell Biol, 2002, 81(12): 692–701

    Article  PubMed  CAS  Google Scholar 

  47. Goto H, Tanabe K, Manser E, Lim L, Yasui Y, Inagaki M. Phosphorylation and reorganization of vimentin by p21-activated kinase (PAK). Genes Cells, 2002, 7(2): 91–97

    Article  PubMed  CAS  Google Scholar 

  48. Sin W C, Chen X Q, Leung T, Lim L. RhoA-binding kinase alpha translocation is facilitated by the collapse of the vimentin intermediate filament network. Mol Cell Biol, 1998, 18(11): 6325–6339

    PubMed  CAS  Google Scholar 

  49. Marganski W A, Gangopadhyay S S, Je H D, Gallant C, Morgan K G. Targeting of a novel Ca+2/calmodulin-dependent protein kinase II is essential for extracellular signal-regulated kinase-mediated signaling in differentiated smooth muscle cells. Circ Res, 2005, 97(6): 541–549

    Article  PubMed  CAS  Google Scholar 

  50. Gerthoffer W T. Mechanisms of vascular smooth muscle cell migration. Circ Res, 2007, 100(5): 607–621

    Article  PubMed  CAS  Google Scholar 

  51. Honda H, Nakamoto T, Sakai R, Hirai H. p130(Cas), an assembling molecule of actin filaments, promotes cell movement, cell migration, and cell spreading in fibroblasts. Biochem Biophys Res Commun, 1999, 262(1): 25–30

    Article  PubMed  CAS  Google Scholar 

  52. Lin Y, Ceacareanu A C, Hassid A. Nitric oxide-induced inhibition of aortic smooth muscle cell motility: role of PTP-PEST and adaptor proteins p130cas and Crk. Am J Physiol Heart Circ Physiol, 2003, 285(2): H710–H721

    PubMed  CAS  Google Scholar 

  53. Ceacareanu A C, Ceacareanu B, Zhuang D, Chang Y, Ray R M, Desai L, Chapman K E, Waters C M, Hassid A. Nitric oxide attenuates IGF-I-induced aortic smooth muscle cell motility by decreasing Rac1 activity: essential role of PTPPEST and p130cas. Am J Physiol Cell Physiol, 2006, 290(4): C1263–C1270

    Article  PubMed  CAS  Google Scholar 

  54. Ishida T, Ishida M, Suero J, Takahashi M, Berk B C. Agonist-stimulated cytoskeletal reorganization and signal transduction at focal adhesions in vascular smooth muscle cells require c-Src. J Clin Invest, 1999, 103(6): 789–797

    Article  PubMed  CAS  Google Scholar 

  55. Rocic P, Govindarajan G, Sabri A, Lucchesi P A. A role for PYK2 in regulation of ERK1/2 MAP kinases and PI 3-kinase by ANG II in vascular smooth muscle. Am J Physiol Cell Physiol, 2001, 280(1): C90–C99

    PubMed  CAS  Google Scholar 

  56. Lawrence J C Jr, Brunn G J. Insulin signaling and the control of PHAS-I phosphorylation. Prog Mol Subcell Biol, 2001, 26: 1–31

    PubMed  CAS  Google Scholar 

  57. Mehta P K, Griendling K K. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol, 2007, 292(1): C82–C97

    Article  PubMed  CAS  Google Scholar 

  58. Mayer B J, Hirai H, Sakai R. Evidence that SH2 domains promote processive phosphorylation by protein-tyrosine kinases. Curr Biol, 1995, 5(3): 296–305

    Article  PubMed  CAS  Google Scholar 

  59. Ushio-Fukai M, Zuo L, Ikeda S, Tojo T, Patrushev N A, Alexander R W. cAbl tyrosine kinase mediates reactive oxygen species- and caveolin-dependent AT1 receptor signaling in vascular smooth muscle: role in vascular hypertrophy. Circ Res, 2005, 97(8): 829–836

    Article  PubMed  CAS  Google Scholar 

  60. Wang J Y. Controlling Abl: auto-inhibition and co-inhibition? Nat Cell Biol, 2004, 6(1): 3–7

    Article  PubMed  CAS  Google Scholar 

  61. Hoeper M M, Rubin L J. Update in pulmonary hypertension 2005. Am J Respir Crit Care Med, 2006, 173(5): 499–505

    Article  PubMed  Google Scholar 

  62. Ghofrani H A, Seeger W, Grimminger F. Imatinib for the treatment of pulmonary arterial hypertension. N Engl J Med, 2005, 353(13): 1412–1413

    Article  PubMed  CAS  Google Scholar 

  63. Tang D, Mehta D, Gunst S J. Mechanosensitive tyrosine phosphorylation of paxillin and focal adhesion kinase in tracheal smooth muscle. Am J Physiol, 1999, 276(1 Pt 1): C250–C258

    PubMed  CAS  Google Scholar 

  64. Parsons J T. Focal adhesion kinase: the first ten years. J Cell Sci, 2003, 116 (Pt 8): 1409–1416

    Article  PubMed  CAS  Google Scholar 

  65. Azar Z M, Mehdi M Z, Srivastava A K. Activation of insulinlike growth factor type-1 receptor is required for H2O2-induced PKB phosphorylation in vascular smooth muscle cells. Can J Physiol Pharmacol, 2006, 84(7): 777–786

    Article  PubMed  CAS  Google Scholar 

  66. Angelucci A, Bologna M. Targeting vascular cell migration as a strategy for blocking angiogenesis: the central role of focal adhesion protein tyrosine kinase family. Curr Pharm Des, 2007, 13(21): 2129–2145

    Article  PubMed  CAS  Google Scholar 

  67. Ruest P J, Shin N Y, Polte T R, Zhang X, Hanks S K. Mechanisms of CAS substrate domain tyrosine phosphorylation by FAK and Src. Mol Cell Biol, 2001, 21(22): 7641–7652

    Article  PubMed  CAS  Google Scholar 

  68. Vuori K, Hirai H, Aizawa S, Ruoslahti E. Introduction of p130cas signaling complex formation upon integrin-mediated cell adhesion: a role for Src family kinases. Mol Cell Biol, 1996, 16(6): 2606–2613

    PubMed  CAS  Google Scholar 

  69. Nakamura I, Jimi E, Duong L T, Sasaki T, Takahashi N, Rodan G A, Suda T. Tyrosine phosphorylation of p130Cas is involved in actin organization in osteoclasts. J Biol Chem, 1998, 273(18): 11144–11149

    Article  PubMed  CAS  Google Scholar 

  70. Fernstrom K, Farmer P, Ali M S. Cytoskeletal remodeling in vascular smooth muscle cells in response to angiotensin IIinduced activation of the SHP-2 tyrosine phosphatase. J Cell Physiol, 2005, 205(3): 402–413

    Article  PubMed  CAS  Google Scholar 

  71. Pratt S J, Epple H, Ward M, Feng Y, Braga V M, Longmore G D. The LIM protein Ajuba influences p130Cas localization and Rac1 activity during cell migration. J Cell Biol, 2005, 168(5): 813–824

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale D. Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, D.D. Crk-associated substrate, vascular smooth muscle and hypertension. Front. Med. China 2, 323–331 (2008). https://doi.org/10.1007/s11684-008-0062-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-008-0062-6

Keywords

Navigation