Skip to main content
Log in

Abnormal functional connectivity density involvement in freezing of gait and its application for subtyping Parkinson’s disease

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The pathophysiological mechanisms at work in Parkinson’s disease (PD) patients with freezing of gait (FOG) remain poorly understood. Functional connectivity density (FCD) could provide an unbiased way to analyse connectivity across the brain. In this study, a total of 23 PD patients with FOG (PD FOG + patients), 26 PD patients without FOG (PD FOG- patients), and 22 healthy controls (HCs) were recruited, and their resting-state functional magnetic resonance imaging (rs-fMRI) images were collected. FCD mapping was first performed to identify differences between groups. Pearson correlation analysis was used to explore relationships between FCD values and the severity of FOG. Then, a machine learning model was employed to classify each pair of groups. PD FOG + patients showed significantly increased short-range FCD in the precuneus, cingulate gyrus, and fusiform gyrus and decreased long-range FCD in the frontal gyrus, temporal gyrus, and cingulate gyrus. Short-range FCD values in the middle temporal gyrus and inferior temporal gyrus were positively correlated with FOG questionnaire (FOGQ) scores, and long-range FCD values in the middle frontal gyrus were negatively correlated with FOGQ scores. Using FCD in abnormal regions as input, a support vector machine (SVM) classifier can achieve classification with good performance. The mean accuracy values were 0.895 (PD FOG + vs. HC), 0.966 (PD FOG- vs. HC), and 0.897 (PD FOG + vs. PD FOG-). This study demonstrates that PD FOG + patients showed altered short- and long-range FCD in several brain regions involved in action planning and control, motion processing, emotion, cognition, and object recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The MRI images will be made available upon reasonable request, subject to approval by the Ethics Committee of Guangzhou First People’s Hospital.

References

  • Arbabshirani, M. R., Plis, S., Sui, J., & Calhoun, V. D. (2017). Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage, 145(Pt B), 137–165.

    Article  PubMed  Google Scholar 

  • Bartels, A. L., de Jong, B. M., Giladi, N., Schaafsma, J. D., Maguire, R. P., Veenma, L., Pruim, J., Balash, Y., Youdim, M. B., & Leenders, K. L. (2006). Striatal dopa and glucose metabolism in PD patients with freezing of gait. Movement Disorders, 21(9), 1326–1332.

    Article  PubMed  Google Scholar 

  • Brockett, A. T., & Roesch, M. R. (2021). Anterior cingulate cortex and adaptive control of brain and behavior. International Review Of Neurobiology, 158, 283–309.

    Article  PubMed  Google Scholar 

  • Bruin, W., Denys, D., & van Wingen, G. (2019). Diagnostic neuroimaging markers of obsessive-compulsive disorder: Initial evidence from structural and functional MRI studies. Progress In Neuropsychopharmacology And Biological Psychiatry, 91, 49–59.

    Article  Google Scholar 

  • Caeyenberghs, K., Siugzdaite, R., Drijkoningen, D., Marinazzo, D., & Swinnen, S. P. (2015). Functional connectivity density and balance in Young Patients with Traumatic Axonal Injury. Brain Connectivity, 5(7), 423–432.

    Article  PubMed  PubMed Central  Google Scholar 

  • Canu, E., Agosta, F., Sarasso, E., Volontè, M. A., Basaia, S., Stojkovic, T., Stefanova, E., Comi, G., Falini, A., Kostic, V. S., Gatti, R., & Filippi, M. (2015). Brain structural and functional connectivity in Parkinson’s disease with freezing of gait. Human Brain Mapping, 36(12), 5064–5078.

  • Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on intelligent systems and technology, 2, 1–27.

    Article  Google Scholar 

  • Cheng, Y., Yang, H., Liu, W. V., Wen, Z., & Chen, J. (2022). Alterations of brain activity in multiple system atrophy patients with freezing of gait: A resting-state fMRI study. Front Neurosci. 2022 16:954332.

  • Chiang, S., Levin, H. S., & Haneef, Z. (2015). Computer-automated focus lateralization of temporal lobe epilepsy using fMRI. Journal Of Magnetic Resonance Imaging, 41(6), 1689–1694.

    Article  PubMed  Google Scholar 

  • Dagan, M., Herman, T., Harrison, R., Zhou, J., Giladi, N., Ruffini, G., Manor, B., & Hausdorff, J. M. (2018). Multitarget transcranial direct current stimulation for freezing of gait in Parkinson’s disease. Movement Disorders, 33(4), 642–646.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dagan, M., Herman, T., Mirelman, A., Giladi, N., & Hausdorff, J. M. (2017). The role of the prefrontal cortex in freezing of gait in Parkinson’s disease: Insights from a deep repetitive transcranial magnetic stimulation exploratory study. Experimental Brain Research, 235(8), 2463–2472.

    Article  PubMed  Google Scholar 

  • Datta, A. K., Das, D., Bhattacharyya, K. B., Bose, P., Mishra, A. K., & Das, S. K. (2019). Frontal assessment battery in Parkinson’s disease: A study on 170 patients. Neurology India, 67(2), 433–438.

    Article  PubMed  Google Scholar 

  • Devos, D., Defebvre, L., & Bordet, R. (2010). Dopaminergic and non-dopaminergic pharmacological hypotheses for gait disorders in Parkinson’s disease. Fundamental & Clinical Pharmacology, 24(4), 407–421.

    Article  CAS  Google Scholar 

  • Diedrichsen, J., Maderwald, S., Küper, M., Thürling, M., Rabe, K., Gizewski, E. R., Ladd, M. E., & Timmann, D. (2011). Imaging the deep cerebellar nuclei: A probabilistic atlas and normalization procedure. Neuroimage, 54(3), 1786–1794.

    Article  CAS  PubMed  Google Scholar 

  • Du, X., Yang, Y., Gao, P., Qi, X., Du, G., Zhang, Y., Li, X., & Zhang, Q. (2017). Compensatory increase of functional connectivity density in adolescents with internet gaming disorder. Brain Imaging Behav, 11(6), 1901–1909.

    Article  PubMed  Google Scholar 

  • Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends In Cognitive Sciences, 15(2), 85–93.

    Article  PubMed  Google Scholar 

  • Fasano, A., Herman, T., Tessitore, A., Strafella, A. P., & Bohnen, N. I. (2015). Neuroimaging of freezing of Gait. J Parkinsons Dis, 5(2), 241–254.

    Article  PubMed  PubMed Central  Google Scholar 

  • Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2, 56–78.

  • Gao, C., Liu, J., Tan, Y., & Chen, S. (2020). Freezing of gait in Parkinson’s disease: Pathophysiology, risk factors and treatments. Transl Neurodegener, 9, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giladi, N. (2001). Freezing of gait. Clinical overview. Advances In Neurology, 87, 191–197.

    CAS  PubMed  Google Scholar 

  • Giladi, N. (2008). Medical treatment of freezing of gait. Movement Disorders, 23(Suppl 2), S482–488.

    Article  PubMed  Google Scholar 

  • Giladi, N., & Hausdorff, J. (2006). M. The role of mental function in the pathogenesis of freezing of gait in Parkinson’s disease. Journal Of The Neurological Sciences, 248(1–2), 173–176.

    Article  PubMed  Google Scholar 

  • Gonçalves, G., & Pereira, J. (2013). [Freezing and gait disorders in Parkinson’s disease]. Revista Medica De Chile, 141(6), 758–764.

    Article  PubMed  Google Scholar 

  • Hobson, A. R., & Hillebrand, A. (2006). Independent component analysis of the EEG: Is this the way forward for understanding abnormalities of brain-gut signalling? Gut, 55(5), 597–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, H., Chen, J., Huang, H., Zhou, C., Zhang, S., Liu, X., Wang, L., Chen, P., Nie, K., Chen, L., Wang, S., Huang, B., & Huang, R. (2020). Common and specific altered amplitude of low-frequency fluctuations in Parkinson’s disease patients with and without freezing of gait in different frequency bands. Brain Imaging Behav, 14(3), 857–868.

    Article  PubMed  Google Scholar 

  • Iseki, K., Fukuyama, H., Oishi, N., Tomimoto, H., Otsuka, Y., Nankaku, M., Benninger, D., Hallett, M., & Hanakawa, T. (2015). Freezing of gait and white matter changes: A tract-based spatial statistics study. J Clin Mov Disord, 2, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jha, M., Jhunjhunwala, K., Sankara, B. B., Saini, J., Kumar, J. K., Yadav, R., & Pal, P. K. (2015). Neuropsychological and imaging profile of patients with Parkinson’s disease and freezing of gait. Parkinsonism & Related Disorders, 21(10), 1184–1190.

    Article  Google Scholar 

  • Jie, B., Liu, M., & Shen, D. (2018). Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease. Medical Image Analysis, 47, 81–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin, C., Qi, S., Teng, Y., Li, C., Yao, Y., Ruan, X., & Wei, X. (2021). Integrating Structural and Functional Interhemispheric Brain Connectivity of Gait freezing in Parkinson’s Disease. Frontiers In Neurology, 12, 609866.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung, J., & Lambon Ralph, M. A. (2021). Enhancing vs. inhibiting semantic performance with transcranial magnetic stimulation over the anterior temporal lobe: Frequency- and task-specific effects. Neuroimage,234, 117959.

    Article  PubMed  Google Scholar 

  • Kleiner, A. F. R., Pacifici, I., Vagnini, A., Camerota, F., Celletti, C., Stocchi, F., De Pandis, M. F., & Galli, M. (2018). Timed up and go evaluation with wearable devices: Validation in Parkinson’s disease. Journal Of Bodywork And Movement Therapies, 22(2), 390–395.

    Article  PubMed  Google Scholar 

  • Kostic, V. S., Agosta, F., Pievani, M., Stefanova, E., Jecmenica-Lukic, M., Scarale, A., Spica, V., & Filippi, M. (2012). Pattern of brain tissue loss associated with freezing of gait in Parkinson disease. Neurology, 78, 409–416.

    Article  CAS  PubMed  Google Scholar 

  • Kropf, E., Syan, S. K., Minuzzi, L., & Frey, B. N. (2019). From anatomy to function: The role of the somatosensory cortex in emotional regulation. Braz J Psychiatry, 41(3), 261–269.

    Article  PubMed  Google Scholar 

  • Kwak, S., Kim, M., Kim, T., Kwak, Y., Oh, S., Lho, S. K., Moon, S. Y., Lee, T. Y., & Kwon, J. S. (2020). Defining data-driven subgroups of obsessive-compulsive disorder with different treatment responses based on resting-state functional connectivity. Transl Psychiatry, 10(1), 359.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lench, D. H., Embry, A., Hydar, A., Hanlon, C. A., & Revuelta, G. (2020). Increased on-state cortico-mesencephalic functional connectivity in Parkinson disease with freezing of gait. Parkinsonism & Related Disorders, 72, 31–36.

    Article  Google Scholar 

  • Lenka, A., Naduthota, R. M., Jha, M., Panda, R., Prajapati, A., Jhunjhunwala, K., Saini, J., Yadav, R., Bharath, R. D., & Pal, P. K. (2016). Freezing of gait in Parkinson’s disease is associated with altered functional brain connectivity. Parkinsonism & Related Disorders, 24, 100–106.

    Article  Google Scholar 

  • Lewis, S. J., & Shine, J. M. (2016). The next step: A common neural mechanism for freezing of Gait. The Neuroscientist : A Review Journal Bringing Neurobiology, Neurology And Psychiatry, 22, 72–82.

    Article  PubMed  Google Scholar 

  • Liu, F., Zhou, X., Wang, Z., Cao, J., Wang, H., & Zhang, Y. (2019). Unobtrusive Mattress-Based identification of hypertension by integrating classification and Association Rule Mining. Sensors (Basel), 19(7), 1489.

    Article  PubMed  Google Scholar 

  • Li, Y., Huang, X., Ruan, X., Duan, D., Zhang, Y., Yu, S., Chen, A., Wang, Z., Zou, Y., Xia, M., & Wei, X. (2022). Baseline cerebral structural morphology predict freezing of gait in early drug-naïve Parkinson’s disease. NPJ Parkinsons Dis, 8(1), 176.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maidan, I., Jacob, Y., Giladi, N., Hausdorff, J. M., & Mirelman, A. (2019). Altered organization of the dorsal attention network is associated with freezing of gait in Parkinson’s disease. Parkinsonism & Related Disorders, 63, 77–82.

    Article  Google Scholar 

  • Maillet, A., Pollak, P., & Debû, B. (2012). Imaging gait disorders in parkinsonism: A review. Journal Of Neurology, Neurosurgery And Psychiatry, 83(10), 986–993.

    Article  PubMed  Google Scholar 

  • Mao, Y., Liao, Z., Liu, X., Li, T., Hu, J., Le, D., Pei, Y., Sun, W., Lin, J., Qiu, Y., Zhu, J., Chen, Y., Qi, C., Su, H., & Yu, E. (2021). Disrupted balance of long and short-range functional connectivity density in Alzheimer’s disease (AD) and mild cognitive impairment (MCI) patients: A resting-state fMRI study. Ann Transl Med, 9(1), 65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review Of Neuroscience, 24, 167–202.

    Article  CAS  PubMed  Google Scholar 

  • Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. (2003). The unified Parkinson’s Disease Rating Scale (UPDRS): Status and recommendations. Movement Disorders, 18(7), 738–750.

    Article  Google Scholar 

  • Nutt, J. G., Bloem, B. R., Giladi, N., Hallett, M., Horak, F. B., & Nieuwboer, A. (2011). Freezing of gait: Moving forward on a mysterious clinical phenomenon. Lancet Neurology, 10(8), 734–744.

    Article  PubMed  Google Scholar 

  • Okuma, Y. (2006). Freezing of gait in Parkinson’s disease. Journal Of Neurology, 253(Suppl 7), VII27–VII32.

    PubMed  Google Scholar 

  • Onitsuka, T., Shenton, M. E., Salisbury, D. F., Dickey, C. C., Kasai, K., Toner, S. K., Frumin, M., Kikinis, R., Jolesz, F. A., & McCarley, R. W. (2004). Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: An MRI study. American Journal Of Psychiatry, 161(9), 1603–1611.

    Article  PubMed  Google Scholar 

  • Pang, H., Yu, Z., Yu, H., Cao, J., Li, Y., Guo, M., Cao, C., & Fan, G. (2021). Use of machine learning method on automatic classification of motor subtype of Parkinson’s disease based on multilevel indices of rs-fMRI. Parkinsonism & Related Disorders, 90, 65–72.

    Article  Google Scholar 

  • Pardoel, S., Kofman, J., Nantel, J., & Lemaire, E. D. (2019). Wearable-Sensor-based Detection and Prediction of Freezing of Gait in Parkinson’s Disease: A Review. Sensors (Basel), 19(23), 5141.

  • Pieruccini-Faria, F., Martens, E., Silveira, K. A., Jones, C. R., J. A., & Almeida, Q. J. (2015). Side of basal ganglia degeneration influences freezing of gait in Parkinson’s disease. Behavioral Neuroscience, 129(2), 214–218.

    Article  PubMed  Google Scholar 

  • Potvin-Desrochers, A., Mitchell, T., Gisiger, T., & Paquette, C. (2019). Changes in resting-state functional connectivity related to freezing of Gait in Parkinson’s Disease. Neuroscience, 418, 311–317.

    Article  CAS  PubMed  Google Scholar 

  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 2142–2154.

  • Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage, 84, 320–341.

    Article  PubMed  Google Scholar 

  • Ren, J., Huang, F., Zhou, Y., Zhuang, L., Xu, J., Gao, C., Qin, S., & Luo, J. (2020). The function of the hippocampus and middle temporal gyrus in forming new associations and concepts during the processing of novelty and usefulness features in creative designs. Neuroimage, 214, 116751.

    Article  PubMed  Google Scholar 

  • Sarasso, E., Basaia, S., Cividini, C., Stojkovic, T., Stankovic, I., Piramide, N., Tomic, A., Markovic, V., Stefanova, E., Kostic, V. S., Filippi, M., & Agosta, F. (2022). MRI biomarkers of freezing of gait development in Parkinson’s disease. NPJ Parkinsons Dis, 8(1), 158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seamans, J. K. (2021). The anterior cingulate cortex and event-based modulation of autonomic states. International Review Of Neurobiology, 158, 135–169.

    Article  PubMed  Google Scholar 

  • Shine, J. M., Matar, E., Ward, P. B., Frank, M. J., Moustafa, A. A., Pearson, M., Naismith, S. L., & Lewis, S. J. (2013). Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain, 136, 3671–3681.

    Article  PubMed  Google Scholar 

  • Shin, J. H., Shin, S. A., Lee, J. Y., Nam, H., Lim, J. S., & Kim, Y. K. (2017). Precuneus degeneration and isolated apathy in patients with Parkinson’s disease. Neuroscience Letters, 653, 250–257.

    Article  CAS  PubMed  Google Scholar 

  • Smitha, K. A., Raja, A., Arun, K., Rajesh, K. M., Thomas, P. G., Kapilamoorthy, B., T. R., & Kesavadas, C. (2017). Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. Neuroradiol J, 30(4), 305–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snijders, A. H., Takakusaki, K., Debu, B., Lozano, A. M., Krishna, V., Fasano, A., Aziz, T. Z., Papa, S. M., Factor, S. A., & Hallett, M. (2016). Physiology of freezing of gait. Annals Of Neurology, 80(5), 644–659.

    Article  PubMed  Google Scholar 

  • Suk, H. I., Wee, C. Y., Lee, S. W., & Shen, D. (2015). Supervised discriminative group sparse representation for mild cognitive impairment diagnosis. Neuroinformatics, 13(3), 277–295.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suo, X., Lei, D., Li, N., Li, J., Peng, J., Li, W., Yang, J., Qin, K., Kemp, G. J., Peng, R., & Gong, Q. (2021). Topologically convergent and divergent morphological gray matter networks in early-stage Parkinson’s disease with and without mild cognitive impairment. Human Brain Mapping, 42(15), 5101–5112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Takezawa, N., Mizuno, T., Seo, K., Kondo, M., & Nakagawa, M. (2010). [Gait disturbances related to dysfunction of the cerebral cortex and basal ganglia]. Brain And Nerve, 62(11), 1193–1202.

    PubMed  Google Scholar 

  • Tessitore, A., Amboni, M., Esposito, F., Russo, A., Picillo, M., Marcuccio, L., Pellecchia, M. T., Vitale, C., Cirillo, M., Tedeschi, G., & Barone, P. (2012). Resting-state brain connectivity in patients with Parkinson’s disease and freezing of gait. Parkinsonism & Related Disorders, 18(6), 781–787.

    Article  Google Scholar 

  • Thibes, R. B., Novaes, N. P., Lucato, L. T., Campanholo, K. R., Melo, L. M., Leite, C. C., Amaro, E. Jr., Barbosa, E. R., Bor-Seng-Shu, E., Cardoso, E. F., & Sato, J. R. (2017). Altered functional connectivity between Precuneus and Motor Systems in Parkinson’s Disease Patients. Brain Connectivity, 7(10), 643–647.

    Article  PubMed  Google Scholar 

  • Tomasi, D., Shokri-Kojori, E., & Volkow, N. D. (2016). High-resolution functional connectivity density: Hub locations, sensitivity, specificity, reproducibility, and reliability. Cerebral Cortex, 26(7), 3249–3259.

    Article  PubMed  Google Scholar 

  • Tomasi, D., & Volkow, N. D. (2010). Functional connectivity density mapping. Proc Natl Acad Sci U S A, 107(21), 9885–9990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasi, D., & Volkow, N. D. (2011). Association between functional connectivity hubs and brain networks. Cerebral Cortex, 21(9), 2003–2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomlinson, C. L., Stowe, R., Patel, S., Rick, C., Gray, R., & Clarke, C. E. (2010). Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Movement Disorders, 25, 2649–2653.

    Article  PubMed  Google Scholar 

  • Wang, M., Jiang, S., Yuan, Y., Zhang, L., Ding, J., Wang, J., Zhang, J., Zhang, K., & Wang, J. (2016). Alterations of functional and structural connectivity of freezing of gait in Parkinson’s disease. Journal Of Neurology, 263(8), 1583–1592.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Dong, L., & Hua, H. (2020). Parameter optimization of support vector machine based on improved grid algorithm. Journal of Physics: Conference Series, 1693(1), 012108.

  • Woo, C. W., Chang, L. J., Lindquist, M. A., & Wager, T. D. (2017). Building better biomarkers: Brain models in translational neuroimaging. Nature Neuroscience, 20(3), 365–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa, N. (2018). Functions and dysfunctions of the basal ganglia in humans. Proc Jpn Acad Ser B Phys Biol Sci, 94(7), 275–2304.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, C. G., & Zang, Y. F. (2010). DPARSF: A MATLAB Toolbox for “Pipeline” Data analysis of resting-state fMRI. Frontiers In Systems Neuroscience, 4, 13.

    CAS  Google Scholar 

  • Yu, Q., Li, Q., Fang, W., Wang, Y., Zhu, Y., Wang, J., Shen, Y., Han, Y., & Zou, D. (2021). Cheng, O. disorganized resting-state functional connectivity between the dorsal attention network and intrinsic networks in Parkinson’s disease with freezing of gait. European Journal Of Neuroscience, 54(7), 6633–6645.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Li, M., Qin, W., Demenescu, L. R., Metzger, C. D., Bogerts, B., Yu, C., & Walter, M. (2016). Altered functional connectivity density in major depressive disorder at rest. Eur Arch Psychiatry Clin Neurosci, 266(3), 239–248.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Dou, B., Wang, J., Xu, K., Zhang, H., Sami, M. U., Hu, C., Rong, Y., Xiao, Q., Chen, N., & Li, K. (2019). Dynamic alterations of spontaneous neural activity in Parkinson’s Disease: A resting-state fMRI study. Frontiers In Neurology, 10, 1052.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Bi, W., Zhang, Y., Zhu, M., Zhang, Y., Feng, H., Wang, J., Zhang, Y., & Jiang, T. (2015). Abnormal functional connectivity density in Parkinson’s disease. Behavioural Brain Research, 280, 113–118.

    Article  PubMed  Google Scholar 

  • Zhou, C., Zhong, X., Yang, Y., Yang, W., Wang, L., Zhang, Y., Nie, K., Xu, J., & Huang, B. (2018). Alterations of regional homogeneity in freezing of gait in Parkinson’s disease. Journal Of The Neurological Sciences, 387, 54–59.

    Article  PubMed  Google Scholar 

  • Zhou, Y., Shi, L., Cui, X., Wang, S., & Luo, X. (2016). Functional connectivity of the caudal anterior cingulate cortex is decreased in Autism. PLoS One, 11(3), e0151879.

  • Zhuo, C., Zhu, J., Qin, W., Qu, H., Ma, X., Tian, H., Xu, Q., & Yu, C. (2014). Functional connectivity density alterations in schizophrenia. Frontiers In Behavioral Neuroscience, 8, 404.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo, X. N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X., Sporns, O., & Milham, M. P. (2012). Network centrality in the human functional connectome. Cerebral Cortex, 22(8), 1862–1875.

Download references

Funding

This work was partly supported by the National Natural Science Foundation of China, China (Nos. 82072008, 81871846), the Fundamental Research Funds for the Central Universities, China (N2124006-3; N2224001-10), the Natural Science Foundation of Guangdong Province, China (2021A1515011288), and the Science and Technology Project of Guangzhou, China (202102010020).

Author information

Authors and Affiliations

Authors

Contributions

CJ performed the experiments and analysed the data along with SQ and LY. SQ, YL, YY, and XW conceived the study, presented the results, and wrote the manuscript along with CJ. XR collected and analysed the data. YT and CL supervised the algorithm development and analysed the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shouliang Qi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethical approval

This study was approved by the ethics committee of Guangzhou First People’s Hospital.

Consent to participate

All the subjects were informed about the examination, expressed their knowledge of the study, and signed the informed consent.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Qi, S., Yang, L. et al. Abnormal functional connectivity density involvement in freezing of gait and its application for subtyping Parkinson’s disease. Brain Imaging and Behavior 17, 375–385 (2023). https://doi.org/10.1007/s11682-023-00765-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-023-00765-7

Keywords

Navigation