Skip to main content

Advertisement

Log in

Brain structural and perfusion changes in amyotrophic lateral sclerosis-frontotemporal dementia patients with cognitive and motor onset: a preliminary study

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) is rare but exhibits worse prognosis than either ALS or FTD alone. However, cognitive onset ALS-FTD (ALS-FTD-C) confers significantly better patient survival than does motor onset ALS-FTD (ALS-FTD-M), underscoring a meager understanding of pathological group differences. This study aimed to assess disparities in cortical atrophy and perfusion shown by patients with the above disease variants. A total of 38 participants (ALS-FTD-C, 8; ALS-FTD-M, 6; simultaneous-onset ALS-FTD [ALS-FTD-S], 4; healthy controls [HC], 20) qualified for the study and underwent magnetic resonance imaging scan. Three-dimensional T1-weighted structural brain imaging and 3D-pseudocontinuous arterial spin-labeled imaging were routinely collected. Gray matter volume (GMV) and cerebral blood flow (CBF) in ALS-FTD-C and ALS-FTD-M were compared through voxel-based analysis. Correlations between imaging parameters and clinical data were also assessed. Compared with HC, ALS-FTD had significant GMV reduction mainly in bilateral limbic system. GMV reduction in ALS-FTD-C was similar in pattern but less widespread, whereas ALS-FTD-M lacked any significant GMV reduction. In CBF analyses, ALS-FTD displayed hypoperfusion in bilateral motor cortex, frontotemporal lobe, and left basal ganglia. Hypoperfusion involved bilateral temporal lobe, prefrontal cortex, and putamen in ALS-FTD-C but was limited to left parahippocampal gyrus in ALS-FTD-M. Correlations between clinical data and GMV/CBF changes in specific regions were also identified in ALS-FTD. Group-specific patterns of cortical atrophy and perfusion were evident in ALS-FTD-C and ALS-FTD-M. ALS-FTD-C showed pronounced cortical atrophy and hypoperfusion, which were otherwise minimal in ALS-FTD-M. Above findings preliminarily revealed the pathological group differences that may help in classifying patients with ALS-FTD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Agosta, F., Valsasina, P., Riva, N., Copetti, M., Messina, M. J., Prelle, A., ..., Filippi, M. (2012). The cortical signature of amyotrophic lateral sclerosis. PLoS One, 7(8), e42816. https://doi.org/10.1371/journal.pone.0042816.

  • Ahmed, R. M., Devenney, E. M., Strikwerda-Brown, C., Hodges, J. R., Piguet, O., & Kiernan, M. C. (2020). Phenotypic variability in ALS-FTD and effect on survival. Neurology, 94(19), e2005–e2013. https://doi.org/10.1212/WNL.0000000000009398

    Article  CAS  PubMed  Google Scholar 

  • Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry--the methods. Neuroimage, 11(6 Pt 1), 805–821. https://doi.org/10.1006/nimg.2000.0582.

  • Bede, P., Omer, T., Finegan, E., Chipika, R. H., Iyer, P. M., Doherty, M. A., ..., Hardiman, O. (2018). Connectivity-based characterisation of subcortical grey matter pathology in frontotemporal dementia and ALS: a multimodal neuroimaging study. Brain Imaging and Behavior, 12(6), 1696–1707. https://doi.org/10.1007/s11682-018-9837-9.

  • Buhour, M. S., Doidy, F., Laisney, M., Pitel, A. L., de La Sayette, V., Viader, F., ..., Desgranges, B. (2017a). Pathophysiology of the behavioral variant of frontotemporal lobar degeneration: A study combining MRI and FDG-PET. Brain Imaging and Behavior, 11(1), 240–252. https://doi.org/10.1007/s11682-016-9521-x.

  • Buhour, M. S., Doidy, F., Mondou, A., Pélerin, A., Carluer, L., Eustache, F., ..., Desgranges, B. (2017b). Voxel-based mapping of grey matter volume and glucose metabolism profiles in amyotrophic lateral sclerosis. EJNMMI Research, 7(1), 21. https://doi.org/10.1186/s13550-017-0267-2.

  • Burrell, J. R., Kiernan, M. C., Vucic, S., & Hodges, J. R. (2011). Motor Neuron dysfunction in frontotemporal dementia. Brain, 134, 2582–2594. https://doi.org/10.1093/brain/awr195

    Article  PubMed  Google Scholar 

  • Burrell, J. R., Halliday, G. M., Kril, J. J., Ittner, L. M., Götz, J., Kiernan, M. C., & Hodges, J. R. (2016). The frontotemporal dementia-motor neuron disease continuum. Lancet, 388(10047), 919–931. https://doi.org/10.1016/s0140-6736(16)00737-6

    Article  PubMed  Google Scholar 

  • Cedarbaum, J. M., Stambler, N., Malta, E., Fuller, C., Hilt, D., Thurmond, B., & Nakanishi, A. (1999). The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). Journal of the Neurological Sciences, 169(1–2), 13–21. https://doi.org/10.1016/s0022-510x(99)00210-5

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Kumfor, F., Landin-Romero, R., Irish, M., & Piguet, O. (2019). The Cerebellum in Frontotemporal Dementia: a Meta-Analysis of Neuroimaging Studies. Neuropsychology Review, 29(4), 450–464. https://doi.org/10.1007/s11065-019-09414-7

    Article  PubMed  Google Scholar 

  • Consonni, M., Contarino, V. E., Catricala, E., Dalla Bella, E., Pensato, V., Gellera, C., ..., Cappa, S. F. (2018). Cortical markers of cognitive syndromes in amyotrophic lateral sclerosis. Neuroimage Clinical, 19, 675–682. https://doi.org/10.1016/j.nicl.2018.05.020.

  • Cui, B., Cui, L., Gao, J., Liu, M., Li, X., Liu, C., ..., Fang, J. (2015). Cognitive Impairment in Chinese Patients with Sporadic Amyotrophic Lateral Sclerosis. PLoS One, 10(9), e0137921. https://doi.org/10.1371/journal.pone.0137921.

  • DeJesus-Hernandez, M., Mackenzie, I. R., Boeve, B. F., Boxer, A. L., Baker, M., Rutherford, N. J., ..., Rademakers, R. (2011). Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron, 72(2), 245–256. https://doi.org/10.1016/j.neuron.2011.09.011.

  • Ferraro, P. M., Jester, C., Olm, C. A., Placek, K., Agosta, F., Elman, L., ..., McMillan, C. T. (2018). Perfusion alterations converge with patterns of pathological spread in transactive response DNA-binding protein 43 proteinopathies. Neurobiology of Aging, 68, 85–92. https://doi.org/10.1016/j.neurobiolaging.2018.04.008.

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. https://doi.org/10.1016/0022-3956(75)90026-6

    Article  CAS  PubMed  Google Scholar 

  • Guedj, E., Le Ber, I., Lacomblez, L., Dubois, B., Verpillat, P., Didic, M., ..., Habert, M. O. (2007). Brain spect perfusion of frontotemporal dementia associated with motor neuron disease. Neurology, 69(5), 488–490. https://doi.org/10.1212/01.wnl.0000266638.53185.e7

  • Hu, W. T., Seelaar, H., Josephs, K. A., Knopman, D. S., Boeve, B. F., Sorenson, E. J., ..., Grossman, M. (2009). Survival profiles of patients with frontotemporal dementia and motor neuron disease. Archives of Neurology, 66(11), 1359–1364. https://doi.org/10.1001/archneurol.2009.253

  • Kansal, K., Mareddy, M., Sloane, K. L., Minc, A. A., Rabins, P. V., McGready, J. B., & Onyike, C. U. (2016). Survival in Frontotemporal Dementia Phenotypes: A Meta-Analysis. Dementia and Geriatric Cognitive Disorders, 41(1–2), 109–122. https://doi.org/10.1159/000443205

    Article  PubMed  Google Scholar 

  • Lomen-Hoerth, C., Anderson, T., & Miller, B. (2002). The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology, 59(7), 1077–1079. https://doi.org/10.1212/wnl.59.7.1077

    Article  PubMed  Google Scholar 

  • Machts, J., Loewe, K., Kaufmann, J., Jakubiczka, S., Abdulla, S., Petri, S., ..., Bede, P. (2015). Basal ganglia pathology in ALS is associated with neuropsychological deficits. Neurology, 85(15), 1301–1309. https://doi.org/10.1212/wnl.0000000000002017.

  • Marin, B., Boumédiene, F., Logroscino, G., Couratier, P., Babron, M. C., Leutenegger, A. L., ..., Beghi, E. (2017). Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis. International Journal of Epidemiology, 46(1), 57–74. https://doi.org/10.1093/ije/dyw061

  • Montuschi, A., Iazzolino, B., Calvo, A., Moglia, C., Lopiano, L., Restagno, G., ..., Chiò, A. (2015). Cognitive correlates in amyotrophic lateral sclerosis: a population-based study in Italy. Journal of Neurology, Neurosurgery, and Psychiatry, 86(2), 168–173. https://doi.org/10.1136/jnnp-2013-307223

  • Müller-Gärtner, H. W., Links, J. M., Prince, J. L., Bryan, R. N., McVeigh, E., Leal, J. P., ..., Frost, J. J. (1992). Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. Journal of Cerebral Blood Flow and Metabolism, 12(4), 571–583. https://doi.org/10.1038/jcbfm.1992.81

  • Murphy, J., Factor-Litvak, P., Goetz, R., Lomen-Hoerth, C., Nagy, P. L., Hupf, J., ..., Mitsumoto, H. (2016). Cognitive-behavioral screening reveals prevalent impairment in a large multicenter ALS cohort. Neurology, 86(9), 813–820. https://doi.org/10.1212/wnl.0000000000002305

  • Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., ..., Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x.

  • Neumann, M., Sampathu, D. M., Kwong, L. K., Truax, A. C., Micsenyi, M. C., Chou, T. T., ..., Lee, V. M. Y. (2006). Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 314(5796), 130–133. https://doi.org/10.1126/science.1134108

  • Niccoli, T., Partridge, L., & Isaacs, A. M. (2017). Ageing as a risk factor for ALS/FTD. Human Molecular Genetics, 26(R2), R105–r113. https://doi.org/10.1093/hmg/ddx247

    Article  CAS  PubMed  Google Scholar 

  • Pizzarotti, B., Palesi, F., Vitali, P., Castellazzi, G., Anzalone, N., Alvisi, E., ..., Gandini Wheeler-Kingshott, C. A. M. (2020). Frontal and Cerebellar Atrophy Supports FTSD-ALS Clinical Continuum. Frontiers in Aging Neuroscience, 12, 593526. https://doi.org/10.3389/fnagi.2020.593526

  • Prell, T., & Grosskreutz, J. (2013). The involvement of the cerebellum in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener, 14(7–8), 507–515. https://doi.org/10.3109/21678421.2013.812661

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan, V., & Pioro, E. P. (2014). Distinct patterns of cortical atrophy in ALS patients with or without dementia: an MRI VBM study. Amyotroph Lateral Scler Frontotemporal Degener, 15(3–4), 216–225. https://doi.org/10.3109/21678421.2014.880179

    Article  PubMed  Google Scholar 

  • Rajagopalan, V., & Pioro, E. P. (2015). Comparing brain structural MRI and metabolic FDG-PET changes in patients with ALS-FTD: 'the chicken or the egg?' question. Journal of Neurology, Neurosurgery, and Psychiatry, 86(9), 952–958. https://doi.org/10.1136/jnnp-2014-308239

    Article  PubMed  Google Scholar 

  • Rajagopalan, V., & Pioro, E. P. (2020). 2-Deoxy-2-[(18) F]fluoro-d-glucose positron emission tomography, cortical thickness and white matter graph network abnormalities in brains of patients with amyotrophic lateral sclerosis and frontotemporal dementia suggest early neuronopathy rather than axonopathy. European Journal of Neurology. https://doi.org/10.1111/ene.14332

  • Ramasubbu, R., Brown, E. C., Marcil, L. D., Talai, A. S., & Forkert, N. D. (2019). Automatic classification of major depression disorder using arterial spin labeling MRI perfusion measurements. Psychiatry and Clinical Neurosciences, 73(8), 486–493. https://doi.org/10.1111/pcn.12862

    Article  PubMed  Google Scholar 

  • Ratti, E., Domoto-Reilly, K., Caso, C., Murphy, A., Brickhouse, M., Hochberg, D., ..., Dickerson, B. C. (2021). Regional prefrontal cortical atrophy predicts specific cognitive-behavioral symptoms in ALS-FTD. Brain Imaging and Behavior, 15(5), 2540–2551. https://doi.org/10.1007/s11682-021-00456-1

  • Renard, D., Collombier, L., Castelnovo, G., Fourcade, G., Kotzki, P. O., & LaBauge, P. (2011). Brain FDG-PET changes in ALS and ALS-FTD. Acta Neurologica Belgica, 111(4), 306–309.

    PubMed  Google Scholar 

  • Renton, A. E., Majounie, E., Waite, A., Simon-Sanchez, J., Rollinson, S., Gibbs, J. R., ..., Consortium, I. (2011). A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron, 72(2), 257–268. https://doi.org/10.1016/j.neuron.2011.09.010

  • Ringholz, G. M., Appel, S. H., Bradshaw, M., Cooke, N. A., Mosnik, D. M., & Schulz, P. E. (2005). Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology, 65(4), 586–590. https://doi.org/10.1212/01.wnl.0000172911.39167.b6

    Article  CAS  PubMed  Google Scholar 

  • Shelley, B. P., & Trimble, M. R. (2004). The insular lobe of Reil--its anatamico-functional, behavioural and neuropsychiatric attributes in humans--a review. The World Journal of Biological Psychiatry, 5(4), 176–200. https://doi.org/10.1080/15622970410029933.

  • Shen, D., Hou, B., Xu, Y., Cui, B., Peng, P., Li, X., ..., Cui, L. (2018). Brain Structural and Perfusion Signature of Amyotrophic Latera Sclerosis With Varying Levels of Cognitive Deficit. Frontiers in Neurology, 9. https://doi.org/10.3389/fneur.2018.00364

  • Strong, M. J., Abrahams, S., Goldstein, L. H., Woolley, S., McLaughlin, P., Snowden, J., ..., Turner, M. R. (2017). Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 18(3–4), 153–174. https://doi.org/10.1080/21678421.2016.1267768

  • Tan, R. H., Devenney, E., Dobson-Stone, C., Kwok, J. B., Hodges, J. R., Kiernan, M. C., ..., Hornberger, M. (2014). Cerebellar integrity in the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS One, 9(8), e105632. https://doi.org/10.1371/journal.pone.0105632

  • Tan, J. P., Li, N., Gao, J., Wang, L. N., Zhao, Y. M., Yu, B. C., ..., Zhou, P. Y. (2015). Optimal cutoff scores for dementia and mild cognitive impairment of the Montreal Cognitive Assessment among elderly and oldest-old Chinese population. Journal of Alzheimer's Disease, 43(4), 1403–1412. https://doi.org/10.3233/jad-141278

  • Verfaillie, S. C., Adriaanse, S. M., Binnewijzend, M. A., Benedictus, M. R., Ossenkoppele, R., Wattjes, M. P., ..., Barkhof, F. (2015). Cerebral perfusion and glucose metabolism in Alzheimer's disease and frontotemporal dementia: two sides of the same coin? European Radiology, 25(10), 3050–3059. https://doi.org/10.1007/s00330-015-3696-1

  • Wang, H., Li, S., Chen, X., Wang, Y., Li, J., & Wang, Z. (2020). Cerebral Blood Flow Alterations in High Myopia: An Arterial Spin Labeling Study. Neural Plasticity, 2020, 6090262. https://doi.org/10.1155/2020/6090262

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the ALS-FTD patients and healthy controls for participating in this study.

Funding

This study was supported by the National Natural Science Foundation of China (Grant number: 81801277) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant number: XDB39000000).

Author information

Authors and Affiliations

Authors

Contributions

YW and DS: study concept and design, data acquisition, statistical analysis, data interpretation, drafting of the manuscript. BH: data acquisition, statistical analysis, critical revision of the manuscript. XS, XY, JG, and ML: data acquisition, study supervision, critical revision of the manuscript. FF: study concept and design, data interpretation, critical revision of the manuscript. LC: study concept and design, data acquisition, data interpretation, study supervision, critical revision of the manuscript.

Corresponding author

Correspondence to Liying Cui.

Ethics declarations

Ethics approval

This study was approved by the Research Ethics Committee of Peking Union Medical College Hospital (No. JS-2509).

Consent to participate

Written informed consent was obtained in accordance with the Declaration of Helsinki (1991) from each patient or their guardians.

Consent for publication

Not applicable.

Conflicts of interest

All authors declared no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Shen, D., Hou, B. et al. Brain structural and perfusion changes in amyotrophic lateral sclerosis-frontotemporal dementia patients with cognitive and motor onset: a preliminary study. Brain Imaging and Behavior 16, 2164–2174 (2022). https://doi.org/10.1007/s11682-022-00686-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-022-00686-x

Keywords

Navigation