Adamaszek, M., D'Agata, F., Ferrucci, R., Habas, C., Keulen, S., Kirkby, K. C., ..., Verhoeven, J. (2017). Consensus Paper: Cerebellum and Emotion. Cerebellum, 16(2), 552-576.https://doi.org/10.1007/s12311-016-0815-8
Alexander-Bloch, A. F., Gogtay, N., Meunier, D., Birn, R., Clasen, L., Lalonde, F., ..., Bullmore, E. T. (2010). Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Front Syst Neurosci, 4, 147.https://doi.org/10.3389/fnsys.2010.00147
Andreasen, N. C., & Pierson, R. (2008). The role of the cerebellum in schizophrenia. Biological Psychiatry, 64(2), 81–88. https://doi.org/10.1016/j.biopsych.2008.01.003
Article
PubMed
PubMed Central
Google Scholar
Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10(3), 295–307. https://doi.org/10.1093/cercor/10.3.295
CAS
Article
PubMed
Google Scholar
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. https://doi.org/10.1196/annals.1440.011
Article
PubMed
Google Scholar
Burgund, E. D., Kang, H. C., Kelly, J. E., Buckner, R. L., Snyder, A. Z., Petersen, S. E., & Schlaggar, B. L. (2002). The feasibility of a common stereotactic space for children and adults in fMRI studies of development. NeuroImage, 17(1), 184–200. https://doi.org/10.1006/nimg.2002.1174
Article
PubMed
Google Scholar
Chen, X., Liu, C., He, H., Chang, X., Jiang, Y., Li, Y., ..., Yao, D. (2017). Transdiagnostic differences in the resting-state functional connectivity of the prefrontal cortex in depression and schizophrenia. J Affect Disord, 217, 118-124.https://doi.org/10.1016/j.jad.2017.04.001
Douaud, G., Mackay, C., Andersson, J., James, S., Quested, D., Ray, M. K., ..., James, A. (2009). Schizophrenia delays and alters maturation of the brain in adolescence. Brain, 132(Pt 9), 2437-2448.https://doi.org/10.1093/brain/awp126
Douaud, G., Smith, S., Jenkinson, M., Behrens, T., Johansen-Berg, H., Vickers, J., ..., James, A. (2007). Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia. Brain, 130(Pt 9), 2375-2386.https://doi.org/10.1093/brain/awm184
Epstein, K. A., Cullen, K. R., Mueller, B. A., Robinson, P., Lee, S., & Kumra, S. (2014). White matter abnormalities and cognitive impairment in early-onset schizophrenia-spectrum disorders. J Am Acad Child Adolesc Psychiatry, 53(3), 362–372 e361–362. doi: https://doi.org/10.1016/j.jaac.2013.12.007
Fan, Y. S., Li, Z., Duan, X., Xiao, J., Guo, X., Han, S., ..., Chen, H. (2020). Impaired interactions among white-matter functional networks in antipsychotic-naive first-episode schizophrenia. Hum Brain Mapp, 41(1), 230-240.https://doi.org/10.1002/hbm.24801
Fornito, A., Bullmore, E. T., & Zalesky, A. (2017). Opportunities and Challenges for Psychiatry in the Connectomic Era. Biol Psychiatry Cogn Neurosci Neuroimaging, 2(1), 9–19. https://doi.org/10.1016/j.bpsc.2016.08.003
Article
PubMed
Google Scholar
Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012). Schizophrenia, neuroimaging and connectomics. NeuroImage, 62(4), 2296–2314. https://doi.org/10.1016/j.neuroimage.2011.12.090
Article
PubMed
Google Scholar
Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996). Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine, 35(3), 346–355. https://doi.org/10.1002/mrm.1910350312
CAS
Article
PubMed
Google Scholar
Gogtay, N., Greenstein, D., Lenane, M., Clasen, L., Sharp, W., Gochman, P., ..., Rapoport, J. (2007). Cortical brain development in nonpsychotic siblings of patients with childhood-onset schizophrenia. Arch Gen Psychiatry, 64(7), 772-780.https://doi.org/10.1001/archpsyc.64.7.772
Herold, R., Feldmann, A., Simon, M., Tenyi, T., Kover, F., Nagy, F., ..., Fekete, S. (2009). Regional gray matter reduction and theory of mind deficit in the early phase of schizophrenia: a voxel-based morphometric study. Acta Psychiatr Scand, 119(3), 199-208.https://doi.org/10.1111/j.1600-0447.2008.01297.x
Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A, 106(6), 2035–2040. https://doi.org/10.1073/pnas.0811168106
Article
PubMed
PubMed Central
Google Scholar
Hu, M. L., Zong, X. F., Mann, J. J., Zheng, J. J., Liao, Y. H., Li, Z. C., ..., Tang, J. S. (2017). A Review of the Functional and Anatomical Default Mode Network in Schizophrenia. Neurosci Bull, 33(1), 73-84.https://doi.org/10.1007/s12264-016-0090-1
Huang, H., Jiang, Y., Xia, M., Tang, Y., Zhang, T., Cui, H., ..., Wang, J. (2017). Increased resting-state global functional connectivity density of default mode network in schizophrenia subjects treated with electroconvulsive therapy. Schizophr Res, 197, 192-199.https://doi.org/10.1016/j.schres.2017.10.044
Jennings, J. H., Kim, C. K., Marshel, J. H., Raffiee, M., Ye, L., Quirin, S., ..., Deisseroth, K. (2019). Interacting neural ensembles in orbitofrontal cortex for social and feeding behaviour. Nature, 565(7741), 645-649.https://doi.org/10.1038/s41586-018-0866-8
Kahn, R. S., & Keefe, R. S. (2013). Schizophrenia is a cognitive illness: Time for a change in focus. JAMA Psychiatry, 70(10), 1107–1112. https://doi.org/10.1001/jamapsychiatry.2013.155
Article
PubMed
Google Scholar
Kanahara, N., Sekine, Y., Haraguchi, T., Uchida, Y., Hashimoto, K., Shimizu, E., & Iyo, M. (2013). Orbitofrontal cortex abnormality and deficit schizophrenia. Schizophrenia Research, 143(2–3), 246–252. https://doi.org/10.1016/j.schres.2012.11.015
Article
PubMed
Google Scholar
Kang, H. C., Burgund, E. D., Lugar, H. M., Petersen, S. E., & Schlaggar, B. L. (2003). Comparison of functional activation foci in children and adults using a common stereotactic space. NeuroImage, 19(1), 16–28. https://doi.org/10.1016/s1053-8119(03)00038-7
Article
PubMed
Google Scholar
Karatekin, C., & Asarnow, R. F. (1999). Exploratory eye movements to pictures in childhood-onset schizophrenia and attention-deficit/hyperactivity disorder (ADHD). Journal of Abnormal Child Psychology, 27(1), 35–49. https://doi.org/10.1023/a:1022662323823
CAS
Article
PubMed
Google Scholar
Kubota, M., van Haren, N. E., Haijma, S. V., Schnack, H. G., Cahn, W., Hulshoff Pol, H. E., & Kahn, R. S. (2015). Association of IQ Changes and Progressive Brain Changes in Patients With Schizophrenia. JAMA Psychiatry, 72(8), 803–812. https://doi.org/10.1001/jamapsychiatry.2015.0712
Article
PubMed
Google Scholar
Kyriakopoulos, M., Vyas, N. S., Barker, G. J., Chitnis, X. A., & Frangou, S. (2008). A diffusion tensor imaging study of white matter in early-onset schizophrenia. Biological Psychiatry, 63(5), 519–523. https://doi.org/10.1016/j.biopsych.2007.05.021
Article
PubMed
Google Scholar
Liao, W., Wu, G. R., Xu, Q., Ji, G. J., Zhang, Z., Zang, Y. F., & Lu, G. (2014). DynamicBC: A MATLAB toolbox for dynamic brain connectome analysis. Brain Connect, 4(10), 780–790. https://doi.org/10.1089/brain.2014.0253
Article
PubMed
PubMed Central
Google Scholar
Lieberman, J. A., Tollefson, G. D., Charles, C., Zipursky, R., Sharma, T., Kahn, R. S., … Group, H. S. (2005). Antipsychotic drug effects on brain morphology in first-episode psychosis. Archives of General Psychiatry, 62(4), 361–370. https://doi.org/10.1001/archpsyc.62.4.361
Article
Google Scholar
Liu, C., Wang, J., Hou, Y., Qi, Z., Wang, L., Zhan, S., ..., Wang, Y. (2018). Mapping the changed hubs and corresponding functional connectivity in idiopathic restless legs syndrome. Sleep Medecine, 45, 132-139.https://doi.org/10.1016/j.sleep.2017.12.016
Liu, C., Zhang, W., Chen, G., Tian, H., Li, J., Qu, H., ..., Zhuo, C. (2017). Aberrant patterns of local and long-range functional connectivity densities in schizophrenia. Oncotarget, 29.https://doi.org/10.18632/oncotarget.18441
Liu, X., Lai, Y., Wang, X., Hao, C., Chen, L., Zhou, Z., ..., Hong, N. (2014). A combined DTI and structural MRI study in medicated-naive chronic schizophrenia. Magn Reson Imaging, 32(1), 1-8.https://doi.org/10.1016/j.mri.2013.08.004
Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., & Bullmore, E. (2010). Functional connectivity and brain networks in schizophrenia. Journal of Neuroscience, 30(28), 9477–9487. https://doi.org/10.1523/JNEUROSCI.0333-10.2010
CAS
Article
PubMed
Google Scholar
Nenadic, I., Dietzek, M., Schönfeld, N., Lorenz, C., Gussew, A., Reichenbach, J. R., ..., Smesny, S. (2015). Brain structure in people at ultra-high risk of psychosis, patients with first-episode schizophrenia, and healthy controls: a VBM study. Schizophr Res, 161(2-3), 169-176.https://doi.org/10.1016/j.schres.2014.10.041
Ota, M., Matsuo, J., Sato, N., Teraishi, T., Hori, H., Hattori, K., ..., Kunugi, H. (2017). Correlation of reduced social communicational and interactional skills with regional grey matter volumes in schizophrenia patients. Acta Neuropsychiatr, 29(6), 374-381.https://doi.org/10.1017/neu.2017.9
Pantelis, C., Velakoulis, D., McGorry, P. D., Wood, S. J., Suckling, J., Phillips, L. J., ..., McGuire, P. K. (2003). Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet, 361(9354), 281-288.https://doi.org/10.1016/S0140-6736(03)12323-9
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 2142-2154.https://doi.org/10.1016/j.neuroimage.2011.10.018
Qiu, L., Yan, H., Zhu, R., Yan, J., Yuan, H., Han, Y., ..., Zhang, D. (2018). Correlations between exploratory eye movement, hallucination, and cortical gray matter volume in people with schizophrenia. BMC Psychiatry, 18(1), 226.https://doi.org/10.1186/s12888-018-1806-8
Rapoport, J. L., & Gogtay, N. (2011). Childhood onset schizophrenia: Support for a progressive neurodevelopmental disorder. International Journal of Developmental Neuroscience, 29(3), 251–258. https://doi.org/10.1016/j.ijdevneu.2010.10.003
Article
PubMed
Google Scholar
Rudebeck, P. H., & Rich, E. L. (2018). Orbitofrontal cortex. Current Biology, 28(18), R1083–R1088. https://doi.org/10.1016/j.cub.2018.07.018
CAS
Article
PubMed
Google Scholar
Sakurai, T., Gamo, N. J., Hikida, T., Kim, S. H., Murai, T., Tomoda, T., & Sawa, A. (2015). Converging models of schizophrenia–Network alterations of prefrontal cortex underlying cognitive impairments. Progress in Neurobiology, 134, 178–201. https://doi.org/10.1016/j.pneurobio.2015.09.010
Article
PubMed
PubMed Central
Google Scholar
Thompson, P. M., Vidal, C., Giedd, J. N., Gochman, P., Blumenthal, J., Nicolson, R., ..., Rapoport, J. L. (2001). Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci U S A, 98(20), 11650-11655.https://doi.org/10.1073/pnas.201243998
Tomasi, D., Shokri-Kojori, E., & Volkow, N. D. (2016). High-Resolution Functional Connectivity Density: Hub Locations, Sensitivity, Specificity, Reproducibility, and Reliability. Cerebral Cortex, 26(7), 3249–3259. https://doi.org/10.1093/cercor/bhv171
Article
PubMed
Google Scholar
Tomasi, D., & Volkow, N. D. (2011). Association between functional connectivity hubs and brain networks. Cerebral Cortex, 21(9), 2003–2013. https://doi.org/10.1093/cercor/bhq268
Article
PubMed
PubMed Central
Google Scholar
Tomasi, D., & Volkow, N. D. (2012). Aging and functional brain networks. Mol Psychiatry, 17(5), 471, 549–458. doi: https://doi.org/10.1038/mp.2011.81
van den Heuvel, M. P., & Fornito, A. (2014). Brain networks in schizophrenia. Neuropsychology Review, 24(1), 32–48. https://doi.org/10.1007/s11065-014-9248-7
Article
PubMed
Google Scholar
Wang, J., Becker, B., Wang, L., Li, H., Zhao, X., & Jiang, T. (2019a). Corresponding anatomical and coactivation architecture of the human precuneus showing similar connectivity patterns with macaques. NeuroImage, 200, 562–574. https://doi.org/10.1016/j.neuroimage.2019.07.001
Article
PubMed
Google Scholar
Wang, J., Wei, Q., Bai, T., Zhou, X., Sun, H., Becker, B., ..., Kendrick, K. (2017). Electroconvulsive therapy selectively enhanced feedforward connectivity from fusiform face area to amygdala in major depressive disorder. Soc Cogn Affect Neurosci, 12(12), 1983-1992.https://doi.org/10.1093/scan/nsx100
Wang, J., Wei, Q., Yuan, X., Jiang, X., Xu, J., Zhou, X., ..., Wang, K. (2017). Local functional connectivity density is closely associated with the response of electroconvulsive therapy in major depressive disorder. J Affect Disord, 225, 658-664.https://doi.org/10.1016/j.jad.2017.09.001
Wang, J., Yang, Y., Fan, L., Xu, J., Li, C., Liu, Y., ..., Jiang, T. (2015). Convergent functional architecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches. Hum Brain Mapp, 36(1), 238-257.https://doi.org/10.1002/hbm.22626
Wang, J., Zhang, J., Rong, M., Wei, X., Zheng, D., Fox, P. T., ..., Jiang, T. (2016). Functional topography of the right inferior parietal lobule structured by anatomical connectivity profiles. Hum Brain Mapp, 37(12), 4316-4332.https://doi.org/10.1002/hbm.23311
Wang, L., Yu, L., Wu, F., Wu, H., & Wang, J. (2019b). Altered whole brain functional connectivity pattern homogeneity in medication-free major depressive disorder. Journal of Affective Disorders, 253, 18–25. https://doi.org/10.1016/j.jad.2019.04.040
Article
PubMed
Google Scholar
Wang, X., Zhang, Y., Long, Z., Zheng, J., Zhang, Y., Han, S., ..., Chen, H. (2017). Frequency-specific alteration of functional connectivity density in antipsychotic-naive adolescents with early-onset schizophrenia. J Psychiatr Res, 95, 68-75.https://doi.org/10.1016/j.jpsychires.2017.07.014
White, T., Ho, B. C., Ward, J., O’Leary, D., & Andreasen, N. C. (2006). Neuropsychological performance in first-episode adolescents with schizophrenia: A comparison with first-episode adults and adolescent control subjects. Biological Psychiatry, 60(5), 463–471. https://doi.org/10.1016/j.biopsych.2006.01.002
Article
PubMed
Google Scholar
Xu, Y., Qin, W., Zhuo, C., Xu, L., Zhu, J., Liu, X., & Yu, C. (2017). Selective functional disconnection of the orbitofrontal subregions in schizophrenia. Psychological Medicine, 47(9), 1637–1646. https://doi.org/10.1017/S0033291717000101
CAS
Article
PubMed
Google Scholar
Yang, Z., Xu, Y., Xu, T., Hoy, C. W., Handwerker, D. A., Chen, G., ..., Bandettini, P. A. (2014). Brain network informed subject community detection in early-onset schizophrenia. Sci Rep, 4, 5549.https://doi.org/10.1038/srep05549
Zhuo, C., Wang, C., Wang, L., Guo, X., Xu, Q., Liu, Y., & Zhu, J. (2018). Altered resting-state functional connectivity of the cerebellum in schizophrenia. Brain Imaging and Behavior, 12(2), 383–389. https://doi.org/10.1007/s11682-017-9704-0
Article
PubMed
Google Scholar
Zhuo, C., Zhu, J., Qin, W., Qu, H., Ma, X., Tian, H., ..., Yu, C. (2014). Functional connectivity density alterations in schizophrenia. Front Behav Neurosci, 8, 404.https://doi.org/10.3389/fnbeh.2014.00404
Zhuo, C., Zhu, J., Wang, C., Qu, H., Ma, X., Tian, H., ..., Qin, W. (2017). Brain structural and functional dissociated patterns in schizophrenia. BMC Psychiatry, 17(1), 45.https://doi.org/10.1186/s12888-017-1194-5