Skip to main content

Advertisement

Log in

Alterations of dynamic functional connectivity between visual and executive-control networks in schizophrenia

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Schizophrenia is a chronic mental disorder characterized by continuous or relapsing episodes of psychosis. While previous studies have detected functional network connectivity alterations in patients with schizophrenia, and most have focused on static functional connectivity. However, brain activity is believed to change dynamically over time. Therefore, we computed dynamic functional network connectivity using the sliding window method in 38 patients with schizophrenia and 31 healthy controls. We found that patients with schizophrenia exhibited higher occurrences in the weakly and sparsely connected state (state 3) than healthy controls, positively correlated with negative symptoms. In addition, patients exhibited fewer occurrences in a strongly connected state (state 4) than healthy controls. Lastly, the dynamic functional network connectivity between the right executive-control network and the medial visual network was decreased in schizophrenia patients compared to healthy controls. Our results further prove that brain activity is dynamic, and that alterations of dynamic functional network connectivity features might be a fundamental neural mechanism in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abram, S. V., et al. (2017). Fronto-temporal connectivity predicts cognitive empathy deficits and experiential negative symptoms in schizophrenia. Human Brain Mapping, 38(3), 1111–1124

    Article  PubMed  Google Scholar 

  • Abrol, A., et al., (2017). Replicability of time-varying connectivity patterns in large resting state fMRI samples. Neuroimage, 163, 160–176

    Article  PubMed  Google Scholar 

  • Adams, R. A., et al., (2020). Impaired theta phase coupling underlies frontotemporal dysconnectivity in schizophrenia. Brain, 143(4), 1261–1277

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen, E. A., et al. (2011). A baseline for the multivariate comparison of resting-state networks. Frontiers in Systems Neuroscience, 5, 2

    PubMed  PubMed Central  Google Scholar 

  • Allen, E. A., et al. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 24(3), 663–676

    Article  PubMed  Google Scholar 

  • Anhoj, S., et al. (2018). Alterations of intrinsic connectivity networks in antipsychotic-Naive first-episode schizophrenia. Schizophrenia Bulletin, 44(6), 1332–1340

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker, J. T., et al., (2014). Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry, 71(2), 109–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Barkhof, F., Haller, S., & Rombouts, S. A. (2014). Resting-state functional MR imaging: a new window to the brain. Radiology, 272(1), 29–49

    Article  PubMed  Google Scholar 

  • Biswal, B., et al. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541

    Article  CAS  PubMed  Google Scholar 

  • Brandl, F., et al. (2019). Specific substantial dysconnectivity in schizophrenia: a transdiagnostic multimodal meta-analysis of resting-state functional and structural magnetic resonance imaging studies. Biological Psychiatry, 85(7), 573–583

    Article  PubMed  Google Scholar 

  • Butler, P. D., et al. (2001). Dysfunction of early-stage visual processing in schizophrenia. The American Journal of Psychiatry, 158(7), 1126–1133

    Article  CAS  PubMed  Google Scholar 

  • Butler, P. D., et al. (2005). Early-stage visual processing and cortical amplification deficits in schizophrenia. Archives of General Psychiatry, 62(5), 495–504

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler, P. D., Silverstein, S. M., & Dakin, S. C. (2008). Visual perception and its impairment in schizophrenia. Biological Psychiatry, 64(1), 40–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Calhoun, V. D., et al., (2014). The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron, 84(2), 262–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter, R., & Ffytche, D. H. (2015). On visual hallucinations and cortical networks: a trans-diagnostic review. Journal of Neurology, 262(7), 1780–1790

    Article  PubMed  PubMed Central  Google Scholar 

  • Chadick, J. Z., & Gazzaley, A. (2011). Differential coupling of visual cortex with default or frontal-parietal network based on goals. Nature Neuroscience, 14(7), 830–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlson, F. J., et al. (2018). Global epidemiology and burden of schizophrenia: findings from the global burden of disease study 2016. Schizophrenia Bulletin, 44(6), 1195–1203

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Y. (2011). Abnormal visual motion processing in schizophrenia: a review of research progress. Schizophrenia Bulletin, 37(4), 709–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csaszar, N., Kapocs, G., & Bokkon, I. (2019). A possible key role of vision in the development of schizophrenia. Reviews in the Neurosciences, 30(4), 359–379

    Article  PubMed  Google Scholar 

  • d’Ambrosio, A., et al. (2020). Reduced dynamics of functional connectivity and cognitive impairment in multiple sclerosis. Multiple Sclerosis Journal, 26(4), 476–488

    Article  PubMed  Google Scholar 

  • Damaraju, E., et al. (2014). Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage: Clinical, 5, 298–308

    Article  CAS  Google Scholar 

  • Deng, Y., et al. (2019). Ventral and dorsal visual pathways exhibit abnormalities of static and dynamic connectivities, respectively, in patients with schizophrenia. Schizophrenia Research, 206, 103–110

    Article  PubMed  Google Scholar 

  • Disease, G. B. D., Injury, I., & Prevalence, C. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392(10159), 1789–1858

    Article  Google Scholar 

  • Dong, D., et al. (2018). Dysfunction of large-scale brain networks in schizophrenia: a meta-analysis of resting-state functional connectivity. Schizophrenia Bulletin, 44(1), 168–181

    Article  PubMed  Google Scholar 

  • Du, Y., et al. (2016). Interaction among subsystems within default mode network diminished in schizophrenia patients: A dynamic connectivity approach. Schizophrenia Research, 170(1), 55–65

    Article  PubMed  Google Scholar 

  • Du, Y., et al., (2018). Dynamic functional connectivity impairments in early schizophrenia and clinical high-risk for psychosis. Neuroimage, 180(Pt B), 632–645

    Article  PubMed  Google Scholar 

  • Du, X., et al. (2019). Aberrant middle prefrontal-motor cortex connectivity mediates motor inhibitory biomarker in schizophrenia. Biological Psychiatry, 85(1), 49–59

    Article  PubMed  Google Scholar 

  • Duan, X., et al. (2019). Effect of risperidone monotherapy on dynamic functional connectivity of insular subdivisions in treatment-Naive, first-episode schizophrenia. Schizophrenia Bulletin, 46(3), 650-660

  • Fiorenzato, E., et al., (2019). Dynamic functional connectivity changes associated with dementia in Parkinson’s disease. Brain, 142(9), 2860–2872

    Article  PubMed  PubMed Central  Google Scholar 

  • Fogelson, N., et al. (2014). The functional anatomy of schizophrenia: A dynamic causal modeling study of predictive coding. Schizophrenia Research, 158(1–3), 204–212

    Article  PubMed  Google Scholar 

  • Gagne, A. M., Hebert, M., & Maziade, M. (2015). Revisiting visual dysfunctions in schizophrenia from the retina to the cortical cells: A manifestation of defective neurodevelopment. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 62, 29–34

    Article  Google Scholar 

  • Gazzaley, A., et al. (2007). Functional interactions between prefrontal and visual association cortex contribute to top-down modulation of visual processing. Cerebral Cortex, 17(Suppl 1), i125-35

  • Himberg, J., Hyvarinen, A., & Esposito, F. (2004). Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage, 22(3), 1214–1222

    Article  PubMed  Google Scholar 

  • Hornix, B. E., Havekes, R., & Kas, M. J. H. (2019). Multisensory cortical processing and dysfunction across the neuropsychiatric spectrum. Neuroscience & Biobehavioral Reviews, 97, 138–151

    Article  Google Scholar 

  • Hugdahl, K. (2009). "Hearing voices”: auditory hallucinations as failure of top-down control of bottom-up perceptual processes. Scandinavian Journal of Psychology, 50(6), 553–560

    Article  PubMed  Google Scholar 

  • Hutchison, R. M., et al., (2013). Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage, 80, 360–378

    Article  PubMed  Google Scholar 

  • Ince, E., & Ucok, A. (2018). Relationship between persistent negative symptoms and findings of neurocognition and neuroimaging in schizophrenia. Clinical EEG and Neuroscience, 49(1), 27–35

    Article  PubMed  Google Scholar 

  • Jimenez, A. M., et al. (2019). Linking resting-state networks and social cognition in schizophrenia and bipolar disorder. Human Brain Mapping, 40(16), 4703–4715

    Article  PubMed  PubMed Central  Google Scholar 

  • Kahn, R. S., et al. (2015). Schizophrenia. Nature Reviews Disease Primers, 1, 15067

    Article  PubMed  Google Scholar 

  • Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261–276

    Article  CAS  PubMed  Google Scholar 

  • Kim, D., et al. (2005). Dysfunction of early-stage visual processing in schizophrenia: harmonic analysis. Schizophrenia Research, 76(1), 55–65

    Article  PubMed  Google Scholar 

  • Kottaram, A., et al. (2018). Spatio-temporal dynamics of resting-state brain networks improve single-subject prediction of schizophrenia diagnosis. Human Brain Mapping, 39(9), 3663–3681

    Article  PubMed  PubMed Central  Google Scholar 

  • Kraepelin, & Emil. (1921). Dementia praecox and Paraphrenia. Journal of Nervous & Mental Disease, 54(4), 384

    Article  Google Scholar 

  • Kraguljac, N. V., et al. (2016). Abnormalities in large scale functional networks in unmedicated patients with schizophrenia and effects of risperidone. NeuroImage: Clinical, 10, 146–158

    Article  Google Scholar 

  • Kuhn, S., & Gallinat, J. (2013). Resting-state brain activity in schizophrenia and major depression: a quantitative meta-analysis. Schizophrenia Bulletin, 39(2), 358–365

    Article  PubMed  Google Scholar 

  • Lee, J., et al. (2010). Regional brain activity during early visual perception in unaffected siblings of schizophrenia patients. Biological Psychiatry, 68(1), 78–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, K., Sweeney, J. A., & Hu, X. P. (2020) Context-dependent dynamic functional connectivity alteration of lateral occipital cortex in schizophrenia. Schizophrenia Research220, 201-209

  • Ma, W. Y., et al. (2019). Dysfunctional dynamics of intra- and inter-network connectivity in dementia with lewy bodies. Frontiers in Neurology, 10, 1265

    Article  PubMed  PubMed Central  Google Scholar 

  • Malhi, G. S., et al. (2019). Resting-state neural network disturbances that underpin the emergence of emotional symptoms in adolescent girls: resting-state fMRI study. British Journal of Psychiatry, 215(3), 545–551

    Article  Google Scholar 

  • Marusak, H. A., et al. (2017). Dynamic functional connectivity of neurocognitive networks in children. Human Brain Mapping, 38(1), 97–108

    Article  PubMed  Google Scholar 

  • Mayer, A. R., et al. (2015). An fMRI study of multimodal selective attention in schizophrenia. British Journal of Psychiatry, 207(5), 420–428

    Article  Google Scholar 

  • Mennigen, E., et al. (2020). State-dependent functional dysconnectivity in youth with psychosis spectrum symptoms. Schizophrenia Bulletin, 46(2), 408–421

    PubMed  Google Scholar 

  • Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends in Cognitive Sciences, 15(10), 483–506

    Article  PubMed  Google Scholar 

  • Mwansisya, T. E., et al. (2017). Task and resting-state fMRI studies in first-episode schizophrenia: A systematic review. Schizophrenia Research, 189, 9–18

    Article  PubMed  Google Scholar 

  • O’Donoghue, S., et al. (2017). Anatomical dysconnectivity in bipolar disorder compared with schizophrenia: A selective review of structural network analyses using diffusion MRI. Journal of Affective Disorders, 209, 217–228

    Article  PubMed  Google Scholar 

  • Pu, S., et al. (2018). Right frontotemporal cortex mediates the relationship between cognitive insight and subjective quality of life in patients with schizophrenia. Frontiers in Psychiatry, 9, 16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid, B., et al. (2014). Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects. Frontiers in Human Neuroscience, 8, 897

    Article  PubMed  PubMed Central  Google Scholar 

  • Ray, K. L., et al. (2017). Functional network changes and cognitive control in schizophrenia. NeuroImage: Clinical, 15, 161–170

    Article  Google Scholar 

  • Ross, L. A., et al. (2007). Impaired multisensory processing in schizophrenia: deficits in the visual enhancement of speech comprehension under noisy environmental conditions. Schizophrenia Research, 97(1–3), 173–183

    Article  PubMed  Google Scholar 

  • Rotarska-Jagiela, A., et al. (2010). Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophrenia Research, 117(1), 21–30

    Article  PubMed  Google Scholar 

  • Sakoglu, U., et al., (2010). A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia. MAGMA, 23(5-6), 351–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandsten, K. E., et al. (2020). Altered self-recognition in patients with schizophrenia. Schizophrenia Research, 218, 116-123

  • Schultz, S. K., & Andreasen, N. C. (1999). Schizophrenia. The Lancet, 353(9162), 1425–1430

    Article  CAS  Google Scholar 

  • Seeley, W. W., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverstein, S. M., & Lai, A. (2021). The phenomenology and neurobiology of visual distortions and hallucinations in schizophrenia: an update. Frontiers in Psychiatry, 12, 684720

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen, H. H. (2015). Core Concept: Resting-state connectivity. Proceedings of the National Academy of Sciences of the United States of America, 112(46), 14115–14116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skudlarski, P., et al. (2010). Brain connectivity is not only lower but different in schizophrenia: a combined anatomical and functional approach. Biological Psychiatry, 68(1), 61–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12569–12574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stekelenburg, J. J., et al. (2013). Deficient multisensory integration in schizophrenia: an event-related potential study. Schizophrenia Research, 147(2–3), 253–261

    Article  PubMed  Google Scholar 

  • Stevenson, R. A., et al. (2017). The associations between multisensory temporal processing and symptoms of schizophrenia. Schizophrenia Research, 179, 97–103

    Article  PubMed  Google Scholar 

  • Wang, X., et al. (2014). Disrupted resting-state functional connectivity in minimally treated chronic schizophrenia. Schizophrenia Research, 156(2–3), 150–156

    Article  PubMed  Google Scholar 

  • Wang, J., et al. (2015). GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Frontiers in Human Neuroscience, 9, 386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, X. J., et al. (2017). Functional network connectivity alterations in schizophrenia and depression. Psychiatry Research: Neuroimaging, 263, 113–120

    Article  PubMed  Google Scholar 

  • Wu, X., et al. (2019). Personality traits are related with dynamic functional connectivity in major depression disorder: A resting-state analysis. Journal of Affective Disorders, 245, 1032–1042

    Article  PubMed  Google Scholar 

  • Zhang, M., et al. (2020). Abnormal amygdala subregional-sensorimotor connectivity correlates with positive symptom in schizophrenia. NeuroImage: Clinical, 26, 102218

    Article  Google Scholar 

  • Zhi, D., et al. (2018). Aberrant dynamic functional network connectivity and graph properties in major depressive disorder. Frontiers in Psychiatry, 9, 339

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by National Key R&D Program of China (2016YFC1306800), Tianjin Science and Technology Plan Projects (2017ZXMFSY00070), and Key Discipline Project for Psychiatry of Tianjin.

Author information

Authors and Affiliations

Authors

Contributions

Weiliang Yang designed the study, writing of the manuscript. Xuexin Xu, Chunxiang Wang and Yongying Cheng: recruitment of patients. Yan Li and Shuli Xu: processed the fMRI data, performed the analysis. Jie Li: reviewed and revised the article.

All authors contributed to and have approved the fnal manuscript.

Corresponding author

Correspondence to Jie Li.

Ethics declarations

Conflicts of interest

All authors of this paper have no conflicts of interest to declare.

Ethics approval

The study was approved by the Ethics Committee of Tianjin Anding Hospital.

Consent to participate and for publication

All participants were provided a written informed consent to participate in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 24.1 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Xu, X., Wang, C. et al. Alterations of dynamic functional connectivity between visual and executive-control networks in schizophrenia. Brain Imaging and Behavior 16, 1294–1302 (2022). https://doi.org/10.1007/s11682-021-00592-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-021-00592-8

Keywords

Navigation