Skip to main content
Log in

Identifying nonlinear dynamics of brain functional networks of patients with schizophrenia by sample entropy

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Different regions in the human brain functionally connect with each other forming a brain functional network, and the time evolution of functional connectivity between different brain regions exhibits complex nonlinear dynamics. This study intends to characterize the nonlinear properties of dynamic functional connectivity and to explore how schizophrenia influences such nonlinear properties. The dynamic functional connectivity is constructed by analyzing resting-state functional magnetic resonance imaging data, and its nonlinear properties are characterized by sample entropy (SampEn), with larger SampEn values corresponding to more complexity. To identify the influence of schizophrenia on SampEn, the difference in SampEn between patients with schizophrenia and healthy controls is analyzed at different levels of the brain. It is shown that the patients exhibit significantly higher SampEn at different levels of the brain, and such phenomenon is mainly caused by a significantly higher SampEn in the visual cortex of the patients. Furthermore, it is also shown that SampEn of the visual cortex is significantly and positively correlated with the illness duration or the symptom severity scores. Because the visual cortex is implicated in the visual information processing, these results can shed light on abnormal visual functions of patients with schizophrenia, and also are consistent with the notion that the nonlinearity underlies the irregularity in psychotic symptoms of schizophrenia. This study extends the application of nonlinear dynamics in brain sciences and suggests that nonlinear properties are effective biomarkers in characterizing the brain functional networks of patients with brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Elbert, T., Ray, W.J., Kowalik, Z.J., Skinner, J.E., Graf, K.E., Birbaumer, N.: Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiol. Rev. 74, 1–47 (1994)

    Article  Google Scholar 

  2. Gu, H.G., Pan, B.B., Chen, G.R., Duan, L.X.: Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn. 78, 391–407 (2014)

    Article  MathSciNet  Google Scholar 

  3. Li, Y.Y., Gu, H.G.: The distinct stochastic and deterministic dynamics between period-adding and period-doubling bifurcations of neural bursting patterns. Nonlinear Dyn. 87, 2541–2562 (2017)

    Article  Google Scholar 

  4. Shilnikov, A.: Complete dynamical analysis of a neuron model. Nonlinear Dyn. 68, 305–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. van Vreeswijk, C., Sompolinsky, H.: Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996)

    Article  Google Scholar 

  6. Buzsaki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004)

    Article  Google Scholar 

  7. Ma, J., Hu, B.L., Wang, C.N., Jin, W.Y.: Simulating the formation of spiral wave in the neuronal system. Nonlinear Dyn. 73, 73–83 (2013)

    Article  MathSciNet  Google Scholar 

  8. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)

    Article  MathSciNet  Google Scholar 

  9. Wang, G.P., Jin, W.Y., Wang, A.: Synchronous firing patterns and transitions in small-world neuronal network. Nonlinear Dyn. 81, 1453–1458 (2015)

    Article  MathSciNet  Google Scholar 

  10. Wang, X.J.: Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268 (2010)

    Article  Google Scholar 

  11. Fernandez, A., Lopez-Ibor, M.I., Turrero, A., Santos, J.M., Moron, M.D., Hornero, R., Gomez, C., Mendez, M.A., Ortiz, T., Lopez-Ibor, J.J.: Lempel-Ziv complexity in schizophrenia: a MEG study. Clin. Neurophysiol. 122, 2227–2235 (2011)

    Article  Google Scholar 

  12. Liu, C.Y., Krishnan, A.P., Yan, L.R., Smith, R.X., Kilroy, E., Alger, J.R., Ringman, J.M., Wang, D.J.J.: Complexity and synchronicity of resting state blood oxygenation level-dependent (BOLD) functional MRI in normal aging and cognitive decline. J. Magn. Reson. Imaging 38, 36–45 (2013)

    Article  Google Scholar 

  13. Maksimenko, V.A., Pavlov, A., Runnova, A.E., Nedaivozov, V., Grubov, V., Koronovslii, A., Pchelintseva, S.V., Pitsik, E., Pisarchik, A.N., Hramov, A.E.: Nonlinear analysis of brain activity, associated with motor action and motor imaginary in untrained subjects. Nonlinear Dyn. 91, 2803–2817 (2018)

    Article  Google Scholar 

  14. Wang, Z., Li, Y., Childress, A.R., Detre, J.A.: Brain entropy mapping using fMRI. Plos One 9, e89948 (2014)

    Article  Google Scholar 

  15. Sokunbi, M.O.: Sample entropy reveals high discriminative power between young and elderly adults in short fMRI data sets. Front. Neuroinform. 8, 69 (2014)

    Article  Google Scholar 

  16. Sokunbi, M.O., Gradin, V.B., Waiter, G.D., Cameron, G.G., Ahearn, T.S., Murray, A.D., Steele, D.J., Staff, R.T.: Nonlinear complexity analysis of brain fMRI signals in schizophrenia. Plos One 9, e95146 (2014)

    Article  Google Scholar 

  17. Yan, J.Q., Wang, Y.H., Ouyang, G.X., Yu, T., Li, Y.J., Sik, A., Li, X.L.: Analysis of electrocorticogram in epilepsy patients in terms of criticality. Nonlinear Dyn. 83, 1909–1917 (2016)

    Article  MathSciNet  Google Scholar 

  18. Yang, A.C., Huang, C.C., Yeh, H.L., Liu, M.E., Hong, C.J., Tu, P.C., Chen, J.F., Huang, N.E., Peng, C.K., Lin, C.P., Tsai, S.J.: Complexity of spontaneous BOLD activity in default mode network is correlated with cognitive function in normal male elderly: a multiscale entropy analysis. Neurobiol. Aging 34, 428–438 (2013)

    Article  Google Scholar 

  19. Yeh, C.H., Shi, W.B.: Generalized multiscale Lempel-Ziv complexity of cyclic alternating pattern during sleep. Nonlinear Dyn. 93, 1899–1910 (2018)

    Article  Google Scholar 

  20. Deco, G., Jirsa, V.K.: Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J. Neurosci. 32, 3366–3375 (2012)

    Article  Google Scholar 

  21. Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995)

    Article  Google Scholar 

  22. Eguiluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V.: Scale-free brain functional networks. Phys. Rev. Lett. 94, 018102 (2005)

    Article  Google Scholar 

  23. Fox, M.D., Raichle, M.E.: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007)

    Article  Google Scholar 

  24. Sheffield, J.M., Barch, D.M.: Cognition and resting-state functional connectivity in schizophrenia. Neurosci. Biobehav. R. 61, 108–120 (2016)

    Article  Google Scholar 

  25. Hull, J.V., Dokovna, L.B., Jacokes, Z.J., Torgerson, C.M., Irimia, A., Van Horn, J.D.: Resting-state functional connectivity in autism spectrum disorders: a review. Front. Psychiatry 7, 205 (2016)

    Article  Google Scholar 

  26. Mulders, P.C., van Eijndhoven, P.F., Schene, A.H., Beckmann, C.F., Tendolkar, I.: Resting-state functional connectivity in major depressive disorder: a review. Neurosci. Biobehav. R. 56, 330–344 (2015)

    Article  Google Scholar 

  27. Wang, R., Wang, L., Yang, Y., Li, J.J., Wu, Y., Lin, P.: Random matrix theory for analyzing the brain functional network in attention deficit hyperactivity disorder. Phys. Rev. E 94, 052411 (2016)

    Article  Google Scholar 

  28. Friston, K.J., Frith, C.D., Liddle, P.F., Frackowiak, R.S.: Functional connectivity: the principal-component analysis of large (PET) data sets. J. Cerebr. Blood F. Met. 13, 5–14 (1993)

    Article  Google Scholar 

  29. Bullmore, E., Sporns, O.: The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012)

    Article  Google Scholar 

  30. Cheng, W., Rolls, E.T., Gu, H.G., Zhang, J., Feng, J.F.: Autism: reduced connectivity between cortical areas involved in face expression, theory of mind, and the sense of self. Brain 138, 1382–1393 (2015)

    Article  Google Scholar 

  31. Takahashi, T.: Complexity of spontaneous brain activity in mental disorders. Prog. Neuro-Psychoph. 45, 258–266 (2013)

    Article  Google Scholar 

  32. Cabral, J., Fernandes, H.M., Van Hartevelt, T.J., James, A.C., Kringelbach, M.L., Deco, G.: Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks. Chaos 23, 046111 (2013)

    Article  MathSciNet  Google Scholar 

  33. Cheng, W., Palaniyappan, L., Li, M., Kendrick, K.M., Zhang, J., Luo, Q., Liu, Z., Yu, R., Deng, W., Wang, Q., Ma, X., Guo, W., Francis, S., Liddle, P., Mayer, A.R., Schumann, G., Li, T., Feng, J.: Voxel-based, brain-wide association study of aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry. NPJ. Schizophrenia 1, 15016 (2015)

    Article  Google Scholar 

  34. Lynall, M.E., Bassett, D.S., Kerwin, R., McKenna, P.J., Kitzbichler, M., Muller, U., Bullmore, E.: Functional connectivity and brain networks in schizophrenia. J. Neurosci. 30, 9477–9487 (2010)

    Article  Google Scholar 

  35. Manoliu, A., Riedl, V., Zherdin, A., Muhlau, M., Schwerthoffer, D., Scherr, M., Peters, H., Zimmer, C., Forstl, H., Bauml, J., Wohlschlager, A.M., Sorg, C.: Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia. Schizophrenia Bull. 40, 428–437 (2014)

    Article  Google Scholar 

  36. Whitfield-Gabrieli, S., Thermenos, H.W., Milanovic, S., Tsuang, M.T., Faraone, S.V., McCarley, R.W., Shenton, M.E., Green, A.I., Nieto-Castanon, A., LaViolette, P., Wojcik, J., Gabrieli, J.D., Seidman, L.J.: Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. P. Natl. Acad. Sci. USA 106, 1279–1284 (2009)

    Article  Google Scholar 

  37. Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24, 663–676 (2014)

    Article  Google Scholar 

  38. Chang, C., Glover, G.H.: Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage 50, 81–98 (2010)

    Article  Google Scholar 

  39. Hutchison, R.M., Womelsdorf, T., Gati, J.S., Everling, S., Menon, R.S.: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum. Brain Mapp. 34, 2154–2177 (2013)

    Article  Google Scholar 

  40. Kaiser, R.H., Whitfield-Gabrieli, S., Dillon, D.G., Goer, F., Beltzer, M., Minkel, J., Smoski, M., Dichter, G., Pizzagalli, D.A.: Dynamic resting-state functional connectivity in major depression. Neuropsychopharmacol. 41, 1822–1830 (2016)

    Article  Google Scholar 

  41. Marusak, H.A., Calhoun, V.D., Brown, S., Crespo, L.M., Sala-Hamrick, K., Gotlib, I.H., Thomason, M.E.: Dynamic functional connectivity of neurocognitive networks in children. Hum. Brain Mapp. 38, 97–108 (2017)

    Article  Google Scholar 

  42. Rashid, B., Damaraju, E., Pearlson, G.D., Calhoun, V.D.: Dynamic connectivity states estimated from resting fMRI identify differences among schizophrenia, bipolar disorder, and healthy control subjects. Front. Hum. Neurosci. 8, 897 (2014)

    Article  Google Scholar 

  43. Wang, R., Zhang, Z.Z., Ma, J., Yang, Y., Lin, P., Wu, Y.: Spectral properties of the temporal evolution of brain network structure. Chaos 25, 123112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, J., Cheng, W., Liu, Z., Zhang, K., Lei, X., Yao, Y., Becker, B., Liu, Y., Kendrick, K.M., Lu, G., Feng, J.: Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. Brain 139, 2307–2321 (2016)

    Article  Google Scholar 

  45. Jia, Y., Gu, H., Luo, Q.: Sample entropy reveals an age-related reduction in the complexity of dynamic brain. Sci. Rep. 7, 7990 (2017)

    Article  Google Scholar 

  46. http://www.fil.ion.ucl.ac.uk/spm. Accessed 20 Apr 2018

  47. Yan, C.G., Zang, Y.F.: DPARSF: a MATLAB toolbox for pipeline data analysis of resting-state fMRI. Front. Syst. Neurosci. 4, 13 (2010)

    Google Scholar 

  48. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273–289 (2002)

    Article  Google Scholar 

  49. Shirer, W.R., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.D.: Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22, 158–165 (2012)

    Article  Google Scholar 

  50. Li, X., Zhu, D., Jiang, X., Jin, C., Zhang, X., Guo, L., Zhang, J., Hu, X., Li, L., Liu, T.: Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients. Hum. Brain Mapp. 35, 1761–1778 (2014)

    Article  Google Scholar 

  51. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol Heart. C. 278, H2039–H2049 (2000)

    Article  Google Scholar 

  52. Pincus, S.M.: Assessing serial irregularity and its implications for health. Ann. NY. Acad. Sci. 954, 245–267 (2001)

    Article  Google Scholar 

  53. Pincus, S.M., Goldberger, A.L.: Physiological time—series analysis—what does regularity quantify. Am. J. Physiol. 266, H1643–H1656 (1994)

    Google Scholar 

  54. Guo, S., Kendrick, K.M., Yu, R., Wang, H.L., Feng, J.: Key functional circuitry altered in schizophrenia involves parietal regions associated with sense of self. Hum. Brain Mapp. 35, 123–139 (2014)

    Article  Google Scholar 

  55. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B. 57, 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  56. Breakspear, M.: The nonlinear theory of schizophrenia. Aust. NZ. J. Psychiat. 40, 20–35 (2006)

    Article  Google Scholar 

  57. Hoptman, M.J., Zuo, X.N., D’Angelo, D., Mauro, C.J., Butler, P.D., Milham, M.P., Javitt, D.C.: Decreased interhemispheric coordination in schizophrenia: a resting state fMRI study. Schizophr. Res. 141, 1–7 (2012)

    Article  Google Scholar 

  58. Kyriakopoulos, M., Dima, D., Roiser, J.P., Corrigall, R., Barker, G.J., Frangou, S.: Abnormal functional activation and connectivity in the working memory network in early-onset schizophrenia. J. Am. Acad. Child Psy. 51, 911–920 (2012)

    Article  Google Scholar 

  59. White, T., Schmidt, M., Kim, D.I., Calhoun, V.D.: Disrupted functional brain connectivity during verbal working memory in children and adolescents with schizophrenia. Cereb. Cortex 21, 510–518 (2011)

    Article  Google Scholar 

  60. Zhuo, C., Zhu, J., Qin, W., Qu, H., Ma, X., Tian, H., Xu, Q., Yu, C.: Functional connectivity density alterations in schizophrenia. Front. Behav. Neurosci. 8, 404 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaguang Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was sponsored by the National Natural Science Foundation of China (Grant Numbers: 11802086, 11872276, and 11572225) and the Key Project of Higher Learning Institution of Henan (Grant Number: 19A110014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Gu, H. Identifying nonlinear dynamics of brain functional networks of patients with schizophrenia by sample entropy. Nonlinear Dyn 96, 2327–2340 (2019). https://doi.org/10.1007/s11071-019-04924-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04924-8

Keywords

Navigation