Skip to main content
Log in

Effects of the dopamine transporter gene on neuroimaging findings in different attention deficit hyperactivity disorder presentations

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Attention-Deficit/Hyperactivity Disorder (ADHD) is a phenotipically and neurobiologically heterogeneous disorder. Deficiencies at different levels in response inhibition, differences in dopamine transporter genotype (DAT1) and various symptomatic presentations contribute to ADHD heterogeneity. Integrating these three aspects into a functional neuroimaging research could help unreval specific neurobiological components of more phenotipically homogeneous groups of patients with ADHD. During the Go-NoGo trial, we investigated the effect of the DAT1 gene using 3 T MRI in 72 ADHD cases and 24 (TD) controls that typically developed between the ages 8 and 15 years. In the total ADHD group, DAT1 predicted homozygosity for the 10R allele and hypoactivation in the anterior cingulate cortex and paracingulate cortex. There were no significant activation differences between DAT1 10R/10R homozygotes and 9R carriers in TD controls. Subjects with predominantly inattentive ADHD (ADHD-I) presentation with DAT1 10R/10R homozygous reduced neuronal activation during Go trial particularly in the frontal regions and insular cortex, and in the parietal regions during NoGo trial (brain regions reported as part of Default Mode Network- DMN). Additionally, DAT1 10R/10R homozygousness was associated with increased occipital zone activation during only the Go trial in the ADHD combined presentation (ADHD-C) group. Our results point the three main findings: 1) The DAT1 gene is 10R homozygous for differentiated brain activation in ADHD cases but not in the TD controls, supporting the DAT1 gene as a potential marker for ADHD, 2) The relationship between the DAT1 gene and the occipital regions in ADHD-C group which may reflect compensatory mechanisms, 3) The relationship between DAT1 gene and the reduced DMN suppression for 9R carriers probabaly stems from the ADHD-I group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achenbach, T. M., & Edelbrock, C. (1991). Manual for the child behavior checklist (4–18) and 1991 profile. Burlington: University of Vermont, Department of Psychiatry Google Scholar.

    Google Scholar 

  • Asherson, P., Brookes, K., Franke, B., Chen, W., Gill, M., Ebstein, R. P., et al. (2007). Confirmation that a specific haplotype of the dopamine transporter gene is associated with combined-type ADHD. The American Journal of Psychiatry, 164(4), 674–677. https://doi.org/10.1176/ajp.2007.164.4.674.

    Article  PubMed  Google Scholar 

  • Auerbach, J. G., Atzaba-Poria, N., Berger, A., Landau, R., Arbelle, S., Raz, Y., & Ebstein, R. (2010). Dopamine risk and paternal ADHD symptomatology associated with ADHD symptoms in four and a half-year-old boys. Psychiatric Genetics, 20(4), 160–165. https://doi.org/10.1097/YPG.0b013e32833a1f27.

    Article  PubMed  Google Scholar 

  • Barkley, R. A. (2006). The inattentive type of ADHD as a distinct disorder: What remains to be done. Clinical Psychology: Science and Practice, 8(4), 489–493. https://doi.org/10.1093/clipsy.8.4.489.

    Article  Google Scholar 

  • Bedard, A.-C., Schulz, K. P., Cook, E. H. J., Fan, J., Clerkin, S. M., Ivanov, I., et al. (2010). Dopamine transporter gene variation modulates activation of striatum in youth with ADHD. NeuroImage, 53(3), 935–942. https://doi.org/10.1016/j.neuroimage.2009.12.041.

    Article  CAS  PubMed  Google Scholar 

  • Bidwell, L. C., Willcutt, E. G., Defries, J. C., & Pennington, B. F. (2007). Testing for neuropsychological endophenotypes in siblings discordant for attention-deficit/hyperactivity disorder. Biological Psychiatry, 62(9), 991–998. https://doi.org/10.1016/j.biopsych.2007.04.003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blokland, G. A. M., de Zubicaray, G. I., McMahon, K. L., & Wright, M. J. (2012). Genetic and environmental influences on neuroimaging phenotypes: A meta-analytical perspective on twin imaging studies. Twin Research and Human Genetics: The Official Journal of the International Society for Twin Studies, 15(3), 351–371. https://doi.org/10.1017/thg.2012.11.

    Article  Google Scholar 

  • Braet, W., Johnson, K. A., Tobin, C. T., Acheson, R., McDonnell, C., Hawi, Z., Barry, E., Mulligan, A., Gill, M., Bellgrove, M. A., Robertson, I. H., & Garavan, H. (2011). fMRI activation during response inhibition and error processing: The role of the DAT1 gene in typically developing adolescents and those diagnosed with ADHD. Neuropsychologia, 49(7), 1641–1650. https://doi.org/10.1016/j.neuropsychologia.2011.01.001.

    Article  PubMed  Google Scholar 

  • Brookes, K. J., Neale, B. M., Sugden, K., Khan, N., Asherson, P., & D’Souza, U. M. (2007). Relationship between VNTR polymorphisms of the human dopamine transporter gene and expression in post-mortem midbrain tissue. American Journal of Medical Genetics Part B, Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics, 144B(8), 1070–1078. https://doi.org/10.1002/ajmg.b.30572.

    Article  CAS  Google Scholar 

  • Brown, A. B., Biederman, J., Valera, E. M., Doyle, A. E., Bush, G., Spencer, T., Monuteaux, M. C., Mick, E., Whitfield-Gabrieli, S., Makris, N., LaViolette, P. S., Oscar-Berman, M., Faraone, S. V., & Seidman, L. J. (2010). Effect of dopamine transporter gene (SLC6A3) variation on dorsal anterior cingulate function in attention-deficit/hyperactivity disorder. American Journal of Medical Genetics Part B, Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics, 153B(2), 365–375. https://doi.org/10.1002/ajmg.b.31022.

    Article  CAS  Google Scholar 

  • Brown, A. B., Biederman, J., Valera, E., Makris, N., Doyle, A., Whitfield-Gabrieli, S., Mick, E., Spencer, T., Faraone, S., & Seidman, L. (2011). Relationship of DAT1 and adult ADHD to task-positive and task-negative working memory networks. Psychiatry Research, 193(1), 7–16. https://doi.org/10.1016/j.pscychresns.2011.01.006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. https://doi.org/10.1196/annals.1440.011.

    Article  PubMed  Google Scholar 

  • Bush, G., Spencer, T. J., Holmes, J., Shin, L. M., Valera, E. M., Seidman, L. J., Makris, N., Surman, C., Aleardi, M., Mick, E., & Biederman, J. (2008). Functional magnetic resonance imaging of methylphenidate and placebo in attention-deficit/hyperactivity disorder during the multi-source interference task. Archives of General Psychiatry, 65(1), 102–114. https://doi.org/10.1001/archgenpsychiatry.2007.16.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C.-H., Gutierrez, E. D., Thompson, W., Panizzon, M. S., Jernigan, T. L., Eyler, L. T., et al. (2012). Hierarchical genetic organization of human cortical surface area. Science (New York, N.Y.), 335(6076), 1634–1636. https://doi.org/10.1126/science.1215330.

    Article  CAS  Google Scholar 

  • Cheon, K.-A., Ryu, Y.-H., Kim, J.-W., & Cho, D.-Y. (2005). The homozygosity for 10-repeat allele at dopamine transporter gene and dopamine transporter density in Korean children with attention deficit hyperactivity disorder: Relating to treatment response to methylphenidate. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 15(1), 95–101. https://doi.org/10.1016/j.euroneuro.2004.06.004.

    Article  CAS  Google Scholar 

  • Christakou, A., Murphy, C. M., Chantiluke, K., Cubillo, A. I., Smith, A. B., Giampietro, V., et al. (2013). Disorder-specific functional abnormalities during sustained attention in youth with attention deficit hyperactivity disorder (ADHD) and with autism. Molecular Psychiatry, 18(2), 236–244. https://doi.org/10.1038/mp.2011.185.

    Article  CAS  PubMed  Google Scholar 

  • Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences of the United States of America, 106(21), 8719–8724. https://doi.org/10.1073/pnas.0900234106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Congdon, E., Lesch, K. P., & Canli, T. (2008). Analysis of DRD4 and DAT polymorphisms and behavioral inhibition in healthy adults: Implications for impulsivity. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics, 147(1), 27–32. https://doi.org/10.1002/ajmg.b.30557.

    Article  CAS  Google Scholar 

  • Cornish, K. M., Manly, T., Savage, R., Swanson, J., Morisano, D., Butler, N., Grant, C., Cross, G., Bentley, L., & Hollis, C. P. (2005). Association of the dopamine transporter (DAT1) 10/10-repeat genotype with ADHD symptoms and response inhibition in a general population sample. Molecular Psychiatry, 10(7), 686–698. https://doi.org/10.1038/sj.mp.4001641.

    Article  CAS  PubMed  Google Scholar 

  • Crosbie, J., & Schachar, R. (2001). Deficient inhibition as a marker for familial ADHD. The American Journal of Psychiatry, 158(11), 1884–1890. https://doi.org/10.1176/appi.ajp.158.11.1884.

    Article  CAS  PubMed  Google Scholar 

  • Cubillo, A., Halari, R., Smith, A., Taylor, E., & Rubia, K. (2012). A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with attention deficit hyperactivity disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention. Cortex; a journal devoted to the study of the nervous system and behavior, 48(2), 194–215. https://doi.org/10.1016/j.cortex.2011.04.007.

    Article  PubMed  Google Scholar 

  • Cummins, T. D. R., Hawi, Z., Hocking, J., Strudwick, M., Hester, R., Garavan, H., Wagner, J., Chambers, C. D., & Bellgrove, M. A. (2012). Dopamine transporter genotype predicts behavioural and neural measures of response inhibition. Molecular Psychiatry, 17(11), 1086–1092. https://doi.org/10.1038/mp.2011.104.

    Article  CAS  PubMed  Google Scholar 

  • Dickstein, S. G., Bannon, K., Castellanos, F. X., & Milham, M. P. (2006). The neural correlates of attention deficit hyperactivity disorder: An ALE meta-analysis. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 47(10), 1051–1062. https://doi.org/10.1111/j.1469-7610.2006.01671.x.

    Article  PubMed  Google Scholar 

  • Durston, S., Thomas, K. M., Worden, M. S., Yang, Y., & Casey, B. J. (2002). The effect of preceding context on inhibition: An event-related fMRI study. NeuroImage, 16(2), 449–453. https://doi.org/10.1006/nimg.2002.1074.

    Article  CAS  PubMed  Google Scholar 

  • Durston, S., Fossella, J. A., Mulder, M. J., Casey, B. J., Ziermans, T. B., Vessaz, M. N., & Van Engeland, H. (2008). Dopamine transporter genotype conveys familial risk of attention-deficit/hyperactivity disorder through striatal activation. Journal of the American Academy of Child and Adolescent Psychiatry, 47(1), 61–67. https://doi.org/10.1097/chi.0b013e31815a5f17.

    Article  PubMed  Google Scholar 

  • Ercan, E. S., Amado, S., Somer, O., & Çıkoğlu, S. (2001). Development of a test battery for the assessment of attention deficit hyperactivity disorder. Turkish Journal of Child and Adolescent Mental Health, 8(3), 132–144.

    Google Scholar 

  • Ercan, E. S., Suren, S., Bacanli, A., Yazici, K. U., Calli, C., Ozyurt, O., et al. (2016). Decreasing ADHD phenotypic heterogeneity: Searching for neurobiological underpinnings of the restrictive inattentive phenotype. European Child & Adolescent Psychiatry, 25(3), 273–282.

    Article  Google Scholar 

  • Faraone, S. V., Perlis, R. H., Doyle, A. E., Smoller, J. W., Goralnick, J. J., Holmgren, M. A., & Sklar, P. (2005). Molecular genetics of attention-deficit/hyperactivity disorder. Biological Psychiatry, 57(11), 1313–1323. https://doi.org/10.1016/j.biopsych.2004.11.024.

    Article  CAS  PubMed  Google Scholar 

  • Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold. Magnetic Resonance in Medicine, 33(5), 636–647.

    Article  CAS  Google Scholar 

  • Fornito, A., Zalesky, A., Bassett, D. S., Meunier, D., Ellison-Wright, I., Yucel, M., Wood, S. J., Shaw, K., O'Connor, J., Nertney, D., Mowry, B. J., Pantelis, C., & Bullmore, E. T. (2011). Genetic influences on cost-efficient organization of human cortical functional networks. The Journal of neuroscience : the official journal of the Society for Neuroscience, 31(9), 3261–3270. https://doi.org/10.1523/JNEUROSCI.4858-10.2011.

    Article  CAS  Google Scholar 

  • Gau, S. S.-F., & Shang, C.-Y. (2010). Executive functions as endophenotypes in ADHD: Evidence from the Cambridge neuropsychological test battery (CANTAB). Journal of Child Psychology and Psychiatry, and Allied Disciplines, 51(7), 838–849. https://doi.org/10.1111/j.1469-7610.2010.02215.x.

    Article  PubMed  Google Scholar 

  • Ghanizadeh, A. (2009). Psychiatric comorbidity differences in clinic-referred children and adolescents with ADHD according to the subtypes and gender. Journal of Child Neurology, 24, 679–684.

    Article  Google Scholar 

  • Gizer, I. R., & Waldman, I. D. (2012). Double dissociation between lab measures of inattention and impulsivity and the dopamine transporter gene (DAT1) and dopamine D4 receptor gene (DRD4). Journal of Abnormal Psychology, 121(4), 1011–1023. https://doi.org/10.1037/a0028225.

    Article  PubMed  Google Scholar 

  • Gökler, B., Ünal, F., Pehlivantürk, B., Kültür, E. Ç., Akdemir, D., & Taner, Y. (2004). Reliability and validity of schedule for affective disorders and schizophrenia for school age children-present and lifetime version-Turkish version (K-SADS-PL-T). Turkish Journal of Child and Adolescent Mental Health, 11(3), 109–116.

    Google Scholar 

  • Goos, L. M., Crosbie, J., Payne, S., & Schachar, R. (2009). Validation and extension of the endophenotype model in ADHD patterns of inheritance in a family study of inhibitory control. The American Journal of Psychiatry, 166(6), 711–717. https://doi.org/10.1176/appi.ajp.2009.08040621.

    Article  PubMed  Google Scholar 

  • Hart, H., Chantiluke, K., Cubillo, A. I., Smith, A. B., Simmons, A., Brammer, M. J., Marquand, A. F., & Rubia, K. (2014). Pattern classification of response inhibition in ADHD: Toward the development of neurobiological markers for ADHD. Human Brain Mapping, 35(7), 3083–3094. https://doi.org/10.1002/hbm.22386.

    Article  PubMed  Google Scholar 

  • van den Heuvel, M. P., van Soelen, I. L. C., Stam, C. J., Kahn, R. S., Boomsma, D. I., & Hulshoff Pol, H. E. (2013). Genetic control of functional brain network efficiency in children. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 23(1), 19–23. https://doi.org/10.1016/j.euroneuro.2012.06.007.

    Article  CAS  Google Scholar 

  • Kamradt, J. M., Nigg, J. T., Friderici, K. H., & Nikolas, M. A. (2017). Neuropsychological performance measures as intermediate phenotypes for attention-deficit/hyperactivity disorder: A multiple mediation analysis. Development and Psychopathology, 29(1), 259–272. https://doi.org/10.1017/S0954579416000195.

    Article  PubMed  Google Scholar 

  • Kotte, A., Faraone, S. V., & Biederman, J. (2013). Association of genetic risk severity with ADHD clinical characteristics. American Journal of Medical Genetics Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics, 162B(7), 718–733. https://doi.org/10.1002/ajmg.b.32171.

    Article  CAS  Google Scholar 

  • Lei, D., Ma, J., Du, X., Shen, G., Jin, X., & Gong, Q. (2014). Microstructural abnormalities in the combined and inattentive subtypes of attention deficit hyperactivity disorder: A diffusion tensor imaging study. Scientific Reports, 4, 6875. https://doi.org/10.1038/srep06875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makris, N., Biederman, J., Valera, E. M., Bush, G., Kaiser, J., Kennedy, D. N., et al. (2007). Cortical thinning of the attention and executive function networks in adults with attention-deficit/hyperactivity disorder. Cerebral cortex (New York, N.Y.: 1991), 17(6), 1364–1375. https://doi.org/10.1093/cercor/bhl047.

    Article  Google Scholar 

  • Nigg, J. T., Karalunas, S. L., Feczko, E., & Fair, D. A. (2020). Toward a revised nosology for ADHD heterogeneity. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. https://doi.org/10.1016/j.bpsc.2020.02.005.

  • Nikolas, M. A., & Burt, S. A. (2010). Genetic and environmental influences on ADHD symptom dimensions of inattention and hyperactivity: A meta-analysis. Journal of Abnormal Psychology, 119(1), 1–17. https://doi.org/10.1037/a0018010.

    Article  PubMed  Google Scholar 

  • Nikolas, M. A., & Nigg, J. T. (2015). Moderators of neuropsychological mechanism in attention-deficit hyperactivity disorder. Journal of Abnormal Child Psychology, 43(2), 271–281. https://doi.org/10.1007/s10802-014-9904-7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Norman, L. J., Carlisi, C. O., Christakou, A., Cubillo, A., Murphy, C. M., Chantiluke, K., Simmons, A., Giampietro, V., Brammer, M., Mataix-Cols, D., & Rubia, K. (2017). Shared and disorder-specific task-positive and default mode network dysfunctions during sustained attention in paediatric attention-deficit/hyperactivity disorder and obsessive/compulsive disorder. NeuroImage. Clinical, 15, 181–193. https://doi.org/10.1016/j.nicl.2017.04.013.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Driscoll, G. A., Depatie, L., Holahan, A.-L. V., Savion-Lemieux, T., Barr, R. G., Jolicoeur, C., & Douglas, V. I. (2005). Executive functions and methylphenidate response in subtypes of attention-deficit/hyperactivity disorder. Biological Psychiatry, 57(11), 1452–1460. https://doi.org/10.1016/j.biopsych.2005.02.029.

    Article  CAS  PubMed  Google Scholar 

  • Polanczyk, G. V., Salum, G. A., Sugaya, L. S., Caye, A., & Rohde, L. A. (2015). Annual research review: A meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. Journal of Child Psychology and Psychiatry, 56(3), 345–365.

    Article  Google Scholar 

  • Ridderinkhof, K. R., van den Wildenberg, W. P. M., Segalowitz, S. J., & Carter, C. S. (2004). Neurocognitive mechanisms of cognitive control: The role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain and Cognition, 56(2), 129–140. https://doi.org/10.1016/j.bandc.2004.09.016.

    Article  PubMed  Google Scholar 

  • Roman, T., Schmitz, M., Polanczyk, G., Eizirik, M., Rohde, L. A., & Hutz, M. H. (2001). Attention-deficit hyperactivity disorder: A study of association with both the dopamine transporter gene and the dopamine D4 receptor gene. American Journal of Medical Genetics, 105(5), 471–478.

    Article  CAS  Google Scholar 

  • Rubia, K. (2007). Neuro-anatomic evidence for the maturational delay hypothesis of ADHD. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19663–19664. https://doi.org/10.1073/pnas.0710329105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saad, J. F., Griffiths, K. R., Kohn, M. R., Clarke, S., Williams, L. M., & Korgaonkar, M. S. (2017). Regional brain network organization distinguishes the combined and inattentive subtypes of attention deficit hyperactivity disorder. NeuroImage. Clinical, 15, 383–390. https://doi.org/10.1016/j.nicl.2017.05.016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulz, K. P., Fan, J., Bedard, A.-C. V., Clerkin, S. M., Ivanov, I., Tang, C. Y., et al. (2012). Common and unique therapeutic mechanisms of stimulant and nonstimulant treatments for attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 69(9), 952–961. https://doi.org/10.1001/archgenpsychiatry.2011.2053.

    Article  PubMed  Google Scholar 

  • Seidman, L. J., Valera, E. M., Makris, N., Monuteaux, M. C., Boriel, D. L., Kelkar, K., Kennedy, D. N., Caviness, V. S., Bush, G., Aleardi, M., Faraone, S. V., & Biederman, J. (2006). Dorsolateral prefrontal and anterior cingulate cortex volumetric abnormalities in adults with attention-deficit/hyperactivity disorder identified by magnetic resonance imaging. Biological Psychiatry, 60(10), 1071–1080. https://doi.org/10.1016/j.biopsych.2006.04.031.

    Article  PubMed  Google Scholar 

  • Shaw, P., Lerch, J., Greenstein, D., Sharp, W., Clasen, L., Evans, A., Giedd, J., Castellanos, F. X., & Rapoport, J. (2006). Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 63(5), 540–549. https://doi.org/10.1001/archpsyc.63.5.540.

    Article  PubMed  Google Scholar 

  • Shaw, P., Gornick, M., Lerch, J., Addington, A., Seal, J., Greenstein, D., Sharp, W., Evans, A., Giedd, J. N., Castellanos, F. X., & Rapoport, J. L. (2007). Polymorphisms of the dopamine D4 receptor, clinical outcome, and cortical structure in attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 64(8), 921–931. https://doi.org/10.1001/archpsyc.64.8.921.

    Article  PubMed  Google Scholar 

  • Smith, S. M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P. M., Federico, A., & De Stefano, N. (2002). Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. NeuroImage, 17(1), 479–489.

    Article  Google Scholar 

  • Solanto, M. V., Schulz, K. P., Fan, J., Tang, C. Y., & Newcorn, J. H. (2009). Event-related FMRI of inhibitory control in the predominantly inattentive and combined subtypes of ADHD. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging, 19(3), 205–212. https://doi.org/10.1111/j.1552-6569.2008.00289.x.

    Article  Google Scholar 

  • Spencer, T. J., Biederman, J., Faraone, S. V., Madras, B. K., Bonab, A. A., Dougherty, D. D., et al. (2013). Functional genomics of attention-deficit/hyperactivity disorder (ADHD) risk alleles on dopamine transporter binding in ADHD and healthy control subjects. Biological Psychiatry, 74(2), 84–89. https://doi.org/10.1016/j.biopsych.2012.11.010.

    Article  CAS  PubMed  Google Scholar 

  • Tomasi, D., Volkow, N. D., Wang, R., Telang, F., Wang, G.-J., Chang, L., Ernst, T., & Fowler, J. S. (2009). Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention. PLoS One, 4(6), e6102. https://doi.org/10.1371/journal.pone.0006102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valera, E. M., Brown, A., Biederman, J., Faraone, S. V., Makris, N., Monuteaux, M. C., et al. (2010). Sex differences in the functional neuroanatomy of working memory in adults with ADHD. The American Journal of Psychiatry, 167(1), 86–94. https://doi.org/10.1176/appi.ajp.2009.09020249.

    Article  PubMed  Google Scholar 

  • Vandenbergh, D. J., Persico, A. M., Hawkins, A. L., Griffin, C. A., Li, X., Jabs, E. W., & Uhl, G. R. (1992). Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics, 14(4), 1104–1106. https://doi.org/10.1016/s0888-7543(05)80138-7.

    Article  CAS  PubMed  Google Scholar 

  • Waldman, I. D., Rowe, D. C., Abramowitz, A., Kozel, S. T., Mohr, J. H., Sherman, S. L., Cleveland, H. H., Sanders, M. L., Gard, J. M. C., & Stever, C. (1998). Association and linkage of the dopamine transporter gene and attention-deficit hyperactivity disorder in children: Heterogeneity owing to diagnostic subtype and severity. American Journal of Human Genetics, 63(6), 1767–1776. https://doi.org/10.1086/302132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willcutt, E. G., Nigg, J. T., Pennington, B. F., Solanto, M. V., Rohde, L. A., Tannock, R., et al. (2012). Validity of DSM-IV attention deficit/hyperactivity disorder symptom dimensions and subtypes. Journal of Abnormal Psychology, 121(4), 991–1010. https://doi.org/10.1037/a0027347.

    Article  PubMed  PubMed Central  Google Scholar 

  • Woo, B. S. C., & Rey, J. M. (2005). The validity of the DSM-IV subtypes of attention-deficit/hyperactivity disorder. The Australian and New Zealand Journal of Psychiatry, 39(5), 344–353. https://doi.org/10.1080/j.1440-1614.2005.01580.x.

    Article  PubMed  Google Scholar 

  • Woo, C.-W., Krishnan, A., & Wager, T. D. (2014). Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations. NeuroImage, 91, 412–419. https://doi.org/10.1016/j.neuroimage.2013.12.058.

    Article  PubMed  PubMed Central  Google Scholar 

  • Woolrich, M. W., Behrens, T. E. J., Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2004). Multilevel linear modelling for FMRI group analysis using Bayesian inference. NeuroImage, 21(4), 1732–1747. https://doi.org/10.1016/j.neuroimage.2003.12.023.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Cahide Aydın for contributions to the case enrollment process.

Funding

This work was partially supported by research grants from the following: Ege University Scientific Research Project Commission, Izmir, Turkey; the National Council for Scientific and Technological Development (CNPq, Brazil); and Hospital de Clinicas de Porto Alegre (HCPA), Porto Alegre, Brazil. No financial or material support was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

E.S.E and L.A.R. designed the protocol of the study. A.B., S.S and K.U.Y. contributed to the case selection procedure and data collection. D.A. and B.K. were responsible for the genetic part of the study. C.C. provided neuroimaging part of the study. G.U.B. drafted the article, E.S.E. revised it critically for intellectual content. All authors approved final version of the manuscript.

Corresponding author

Correspondence to Gul Unsel-Bolat.

Ethics declarations

After the study procedures were described, the participants’ parents provided written informed consent. The Ethics Committee of Ege University in Turkey approved the study protocol.

Conflict of interest

Eyüp Sabri Ercan is on the advisory board of Sanofi Turkey. L. A. Rohde received grant or research support and served as a consultant and on the speakers’ bureaus of Eli Lilly and Co., Janssen, Medice, Novartis and Shire. The ADHD and Juvenile Bipolar Disorder Outpatient Programs chaired by Dr. Rohde received unrestricted educational and research support from the following pharmaceutical companies: Janssen, Novartis, and Shire. Dr. Rohde received travel grants from Shire to participate in the 2015 WFADHD congress. He received royalties from Artmed Editora and Oxford University Press. The other authors declare that they have no conflicts of interest to report.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacanlı, A., Unsel-Bolat, G., Suren, S. et al. Effects of the dopamine transporter gene on neuroimaging findings in different attention deficit hyperactivity disorder presentations. Brain Imaging and Behavior 15, 1103–1114 (2021). https://doi.org/10.1007/s11682-020-00437-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-020-00437-w

Keywords

Navigation