Skip to main content
Log in

Reliability and availability of granger causality density in localization of Rolandic focus in BECTS

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

A Correction to this article was published on 10 November 2022

This article has been updated

Abstract

A new method, called granger causality density (GCD), could reflect the directed information flow of the epileptiform activity, which is much closely match with excitatory and inhibitory imbalance theory of epilepsy. Here, we investigated if GCD could effectively localize the Rolandic focus in 50 patients with benign childhood epilepsy with central-temporal spikes (BECTS) from 27 normal children. The BECTS were classified into ictal epileptiform discharges (IEDs; 12 females, 15 males;age, 8.15 ± 1.68 years) and non-IEDs (10 females, 13 males; age, 9.09 ± 1.98 years) subgroups depending on the presence of central-temporal spikes. Multiple correlation-modality analyses (Pearson, across-voxel and across-subject correlations) were used to calculate the couplings between the GCD maps and IEDs-related brain activation map. The individual lateralization coefficient of localize IEDs and multiple regression analysis were used to identify the reliability of the GCD method in localizing the Rolandic focus. In this study, multiple correlation-modality analyses showed that the IEDs-related brain activation map and the GCD maps had highly temporal (coefficient ׀r\= 0.56 ~ 0.65) and spatial (\r\=0.53~0.91) (r\=~ couplings. The proposed GCD method and multiple regression analyses showed consistent findings with the clinical EEG recordings in lateralization of Rolandic focus. Furthermore, the GCD method could reflect the epilepsy-related brain activity during non-IEDs substate. Therefore, the proposed GCD method has the potential to be served as an effective and reliable neuroimaging biomarker to localize the Rolandic focus of BECTS. These findings are critical for clinical early diagnosis, and may promote the progression of treatment and management of pediatric epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  • Amrutkar, C., & Riel-Romero, R. M. (2019). Rolandic epilepsy (BRE) seizure. Treasure Island (FL): StatPearls.

    Google Scholar 

  • Anne T B, Gary W M., Richard A B., Robert K F., Francis, D., Francine M T., Susan R L., 2009. Frequency, prognosis and surgical treatment of structural abnormalities seen with magnetic resonance imaging in childhood epilepsy. BRAIN Pt 10.

  • Archer, J. S., Briellman, R. S., Abbott, D. F., Syngeniotis, A., Wellard, R. M., & Jackson, G. D. (2003). Benign epilepsy with centro-temporal spikes: Spike triggered fMRI shows somato-sensory cortex activity. EPILEPSIA, 44, 200–204.

    Article  PubMed  Google Scholar 

  • Badawy, R. A., Freestone, D. R., Lai, A., & Cook, M. J. (2012). Epilepsy: Ever-changing states of cortical excitability. Neuroscience, 222, 89–99.

    Article  CAS  PubMed  Google Scholar 

  • Beaussart, M. (1972). Benign epilepsy of children with Rolandic (centro-temporal) paroxysmal foci. A clinical entity. Study of 221 cases. EPILEPSIA, 13, 795–811.

    Article  CAS  PubMed  Google Scholar 

  • Bedoin, N., Ciumas, C., Lopez, C., Redsand, G., Herbillon, V., Laurent, A., & Ryvlin, P. (2012). Disengagement and inhibition of visual-spatial attention are differently impaired in children with rolandic epilepsy and Panayiotopoulos syndrome. Epilepsy & Behavior, 25, 81–91.

    Article  Google Scholar 

  • Berg, A. T., Berkovic, S. F., Brodie, M. J., Buchhalter, J., Cross, J. H., van Emde Boas, W., Engel, J., French, J., Glauser, T. A., Mathern, G. W., Moshe, S. L., Nordli, D., Plouin, P., & Scheffer, I. E. (2010). Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE commission on classification and terminology, 2005-2009. EPILEPSIA, 51, 676–685.

    Article  PubMed  Google Scholar 

  • Boor, R., Jacobs, J., Hinzmann, A., Bauermann, T., Scherg, M., Boor, S., Vucurevic, G., Pfleiderer, C., Kutschke, G., & Stoeter, P. (2007). Combined spike-related functional MRI and multiple source analysis in the non-invasive spike localization of benign rolandic epilepsy. Clinical Neurophysiology, 118, 901–909.

    Article  CAS  PubMed  Google Scholar 

  • Boor, S., Vucurevic, G., Pfleiderer, C., Stoeter, P., Kutschke, G., & Boor, R. (2003). EEG-related functional MRI in benign childhood epilepsy with centrotemporal spikes. EPILEPSIA, 44, 688–692.

    Article  PubMed  Google Scholar 

  • Broggini, A. C. S., Esteves, I. M., Romcy-Pereira, R. N., Leite, J. P., & Leao, R. N. (2016). Pre-ictal increase in theta synchrony between the hippocampus and prefrontal cortex in a rat model of temporal lobe epilepsy. Experimental Neurology, 279, 232–242.

    Article  PubMed  Google Scholar 

  • Centeno, M., & Carmichael, D. W. (2014). Network connectivity in epilepsy: Resting state fMRI and EEG-fMRI contributions. Frontiers in Neurology, 5, 93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Liu, B.-X., Liu, R., Zheng, J., & Dai, X.-J. (2019). Ventral visual pathway-cerebellar circuit deficits in alcohol dependence: Long- and short-range functional connectivity density study. Frontiers in Neurology, 10, 98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark, S., & Wilson, W. A. (1999). Mechanisms of epileptogenesis. Advances in Neurology, 79, 607–630.

    CAS  PubMed  Google Scholar 

  • Dai, X.-J., Wang, N., Ai, S., Gong, L., Tao, W., Fan, J., Liu, J., & Wang, Y. (2020). Decreased modulation of segregated SEEKING and selective attention systems in chronic insomnia. Brain Imaging and Behavior.

  • Dai, X.-J., Xu, Q., Hu, J., Zhang, Q., Xu, Y., Zhang, Z., & Lu, G. (2019). BECTS Substate Classification by Granger Causality Density Based Support Vector Machine Model. Frontiers in Neurology, 10.

  • Dai, X. J., Gong, H. H., Wang, Y. X., Zhou, F. Q., Min, Y. J., Zhao, F., Wang, S. Y., Liu, B. X., & Xiao, X. Z. (2012). Gender differences in brain regional homogeneity of healthy subjects after normal sleep and after sleep deprivation: A resting-state fMRI study. Sleep Medicine, 13, 720–727.

    Article  PubMed  Google Scholar 

  • Dai, X. J., Nie, X., Liu, X., Pei, L., Jiang, J., Peng, D. C., Gong, H. H., Zeng, X. J., Wang, Y. X., & Zhan, Y. (2016). Gender differences in regional brain activity in patients with chronic primary insomnia: Evidence from a resting-state fMRI study. Journal of Clinical Sleep Medicine, 12, 363–374.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai, X. J., Peng, D. C., Gong, H. H., Wan, A. L., Nie, X., Li, H. J., & Wang, Y. X. (2014). Altered intrinsic regional brain spontaneous activity and subjective sleep quality in patients with chronic primary insomnia: A resting-state fMRI study. Neuropsychiatric Disease and Treatment, 10, 2163–2175.

    Article  PubMed  PubMed Central  Google Scholar 

  • Datta, A. N., Oser, N., Bauder, F., Maier, O., Martin, F., Ramelli, G. P., Steinlin, M., Weber, P., & Penner, I. K. (2013). Cognitive impairment and cortical reorganization in children with benign epilepsy with centrotemporal spikes. EPILEPSIA, 54, 487–494.

    Article  PubMed  Google Scholar 

  • Dong, L., Wang, P., Peng, R., Jiang, S., Klugah-Brown, B., Luo, C., & Yao, D. (2016). Altered basal ganglia-cortical functional connections in frontal lobe epilepsy: A resting-state fMRI study. Epilepsy Research, 128, 12–20.

    Article  PubMed  Google Scholar 

  • Doose, H., Brigger-Heuer, B., & Neubauer, B. (1997). Children with focal sharp waves: Clinical and genetic aspects. EPILEPSIA, 38, 788–796.

    Article  CAS  PubMed  Google Scholar 

  • Duncan, J. S., Winston, G. P., Koepp, M. J., & Ourselin, S. (2016). Brain imaging in the assessment for epilepsy surgery. Lancet Neurology, 15, 420–433.

    Article  PubMed  Google Scholar 

  • Ebus, S. C., Overvliet, G. M., Arends, J. B., & Aldenkamp, A. P. (2011). Reading performance in children with rolandic epilepsy correlates with nocturnal epileptiform activity, but not with epileptiform activity while awake. Epilepsy & Behavior, 22, 518–522.

    Article  CAS  Google Scholar 

  • Fox, M. D., Snyder, A. Z., Zacks, J. M., & Raichle, M. E. (2006). Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nature Neuroscience, 9, 23–25.

    Article  CAS  PubMed  Google Scholar 

  • Fritschy, J. M. (2008). Epilepsy, E/I balance and GABA(a) receptor plasticity. Frontiers in Molecular Neuroscience, 1, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Groening, K., Brodbeck, V., Moeller, F., Wolff, S., van Baalen, A., Michel, C. M., Jansen, O., Boor, R., Wiegand, G., Stephani, U., & Siniatchkin, M. (2009). Combination of EEG-fMRI and EEG source analysis improves interpretation of spike-associated activation networks in paediatric pharmacoresistant focal epilepsies. NEUROIMAGE, 46, 827–833.

    Article  PubMed  Google Scholar 

  • Grosso, S., Galimberti, D., Vezzosi, P., Farnetani, M., Di Bartolo, R. M., Bazzotti, S., Morgese, G., & Balestri, P. (2005). Childhood absence epilepsy: Evolution and prognostic factors. EPILEPSIA, 46, 1796–1801.

    Article  PubMed  Google Scholar 

  • John S. A. Regula S. B., David F. A., Ari, S., R. W Mark, Graeme D J., 2003. Benign epilepsy with Centro-temporal spikes: Spike triggered fMRI shows Somato-sensory CortexActivity. EPILEPSIA 44, 200–204.

    Article  Google Scholar 

  • Jones, A. L., & Cascino, G. D. (2016). Evidence on use of neuroimaging for surgical treatment of temporal lobe epilepsy: A systematic review. JAMA Neurology, 73, 464–470.

    Article  PubMed  Google Scholar 

  • Jurkeviciene, G., Endziniene, M., Laukiene, I., Saferis, V., Rastenyte, D., Plioplys, S., & Vaiciene-Magistris, N. (2012). Association of language dysfunction and age of onset of benign epilepsy with centrotemporal spikes in children. European Journal of Paediatric Neurology, 16, 653–661.

    Article  PubMed  Google Scholar 

  • Kellaway, P. (2000). The electroencephalographic features of benign centrotemporal (rolandic) epilepsy of childhood. EPILEPSIA, 41, 1053–1056.

    Article  CAS  PubMed  Google Scholar 

  • Knowlton, R., Elgavish, R. A, Ojha B., Limdi N., Blount J., Burneo, J., Ver-Hoef L., Paige, L., Faught E., Kankirawatana P., 2010. Functional imaging: II. Prediction of epilepsy surgery outcome. Annals of Neurology 64, 35–41.

    Article  Google Scholar 

  • Koelewijn, L., Hamandi, K., Brindley, L. M., Brookes, M. J., Routley, B. C., Muthukumaraswamy, S. D., Williams, N., Thomas, M. A., Kirby, A., Te Water Naude, J., Gibbon, F., & Singh, K. D. (2015). Resting-state oscillatory dynamics in sensorimotor cortex in benign epilepsy with centro-temporal spikes and typical brain development. Human Brain Mapping, 36, 3935–3949.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laufs, H. (2012). Functional imaging of seizures and epilepsy: Evolution from zones to networks. Current Opinion in Neurology, 25, 194–200.

    Article  PubMed  Google Scholar 

  • Lee, Y. J., Hwang, S. K., & Kwon, S. (2017). The clinical Spectrum of benign epilepsy with Centro-temporal spikes: A challenge in categorization and predictability. J Epilepsy Res, 7, 1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lengler, U., Kafadar, I., Neubauer, B. A., & Krakow, K. (2007). fMRI correlates of interictal epileptic activity in patients with idiopathic benign focal epilepsy of childhood. A simultaneous EEG-functional MRI study. Epilepsy Research, 75, 29–38.

    Article  PubMed  Google Scholar 

  • Masterton, R. A., Harvey, A. S., Archer, J. S., Lillywhite, L. M., Abbott, D. F., Scheffer, I. E., & Jackson, G. D. (2010). Focal epileptiform spikes do not show a canonical BOLD response in patients with benign rolandic epilepsy (BECTS). NEUROIMAGE, 51, 252–260.

    Article  PubMed  Google Scholar 

  • Masterton, R. A., Jackson, G. D., & Abbott, D. F. (2013). Mapping brain activity using event-related independent components analysis (eICA): Specific advantages for EEG-fMRI. NEUROIMAGE, 70, 164–174.

    Article  PubMed  Google Scholar 

  • McCormick, D. A., & Contreras, D. (2001). On the cellular and network bases of epileptic seizures. Annual Review of Physiology, 63, 815–846.

    Article  CAS  PubMed  Google Scholar 

  • Miziara, C. S., de Manreza, M. L., Mansur, L., Reed, U. C., Guilhoto, L. M., Serrano, V. A., Gois, S., & Group C.I. (2012). Impact of benign childhood epilepsy with centrotemporal spikes (BECTS) on school performance. SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 21, 87–91.

    Article  PubMed  Google Scholar 

  • Nabavizadeh, S. A., Nasrallah, I., & Dubroff, J. (2017). Emerging PET/MRI applications in neuroradiology and neuroscience. Clinical and Translational Imaging, 5, 121–133.

    Article  Google Scholar 

  • Overvliet, G. M., Aldenkamp, A. P., Klinkenberg, S., Vles, J. S., & Hendriksen, J. (2011). Impaired language performance as a precursor or consequence of Rolandic epilepsy? Journal of the Neurological Sciences, 304, 71–74.

    Article  CAS  PubMed  Google Scholar 

  • Overvliet, G. M., Besseling, R. M., van der Kruijs, S. J., Vles, J. S., Backes, W. H., Hendriksen, J. G., Ebus, S. C., Jansen, J. F., Hofman, P. A., & Aldenkamp, A. P. (2013). Clinical evaluation of language fundamentals in Rolandic epilepsy, an assessment with CELF-4. European Journal of Paediatric Neurology, 17, 390–396.

    Article  PubMed  Google Scholar 

  • Panayiotopoulos, C. P., Michael, M., Sanders, S., Valeta, T., & Koutroumanidis, M. (2008). Benign childhood focal epilepsies: Assessment of established and newly recognized syndromes. BRAIN, 131, 2264–2286.

    Article  PubMed  Google Scholar 

  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NEUROIMAGE, 59, 2142–2154.

    Article  PubMed  Google Scholar 

  • Rakhade, S. N., & Jensen, F. E. (2009). Epileptogenesis in the immature brain: Emerging mechanisms. Nature Reviews. Neurology, 5, 380–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J., Calkins, M. E., Eickhoff, S. B., Hakonarson, H., Gur, R. C., Gur, R. E., & Wolf, D. H. (2013). An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NEUROIMAGE, 64, 240–256.

    Article  PubMed  Google Scholar 

  • Spencer, S. S. (2002). Neural networks in human epilepsy: Evidence of and implications for treatment. EPILEPSIA, 43, 219–227.

    Article  PubMed  Google Scholar 

  • Tang, Y. L., Ji, G. J., Yu, Y., Wang, J., Wang, Z. J., Zang, Y. F., Liao, W., & Ding, M. P. (2014). Altered regional homogeneity in rolandic epilepsy: A resting-state FMRI study. BioMed Research International, 2014, 960395.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomasi, D., & Volkow, N. D. (2010). Functional connectivity density mapping. Proceedings of the National Academy of Sciences of the United States of America, 107, 9885–9890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NEUROIMAGE, 59, 431–438.

    Article  PubMed  Google Scholar 

  • Vannest, J., Tenney, J. R., Altaye, M., Byars, A. W., Spencer, C., Maloney, T. C., Szaflarski, J. P., Morita, D., & Glauser, T. A. (2016). Impact of frequency and lateralization of interictal discharges on neuropsychological and fine motor status in children with benign epilepsy with centrotemporal spikes. EPILEPSIA, 57, e161–e167.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vannest, J., Tenney, J. R., Gelineau-Morel, R., Maloney, T., & Glauser, T. A. (2015). Cognitive and behavioral outcomes in benign childhood epilepsy with centrotemporal spikes. Epilepsy & Behavior, 45, 85–91.

    Article  Google Scholar 

  • Verrotti, A., Filippini, M., Matricardi, S., Agostinelli, M. F., & Gobbi, G. (2014). Memory impairment and benign epilepsy with centrotemporal spike (BECTS): A growing suspicion. Brain and Cognition, 84, 123–131.

    Article  PubMed  Google Scholar 

  • Wickens, S., Bowden, S. C., & D'Souza, W. (2017). Cognitive functioning in children with self-limited epilepsy with centrotemporal spikes: A systematic review and meta-analysis. Epilepsia, 58, 1673–1685.

    Article  PubMed  Google Scholar 

  • Wu, Y., Ji, G. J., Zang, Y. F., Liao, W., Jin, Z., Liu, Y. L., Li, K., Zeng, Y. W., & Fang, F. (2015). Local activity and causal connectivity in children with benign epilepsy with Centrotemporal spikes. PLoS One, 10, e0134361.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A., Li, Q., Zuo, X. N., Castellanos, F. X., & Milham, M. P. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. NEUROIMAGE, 76, 183–201.

    Article  PubMed  Google Scholar 

  • Zeng, H., Ramos, C. G., Nair, V. A., Hu, Y., Liao, J., La, C., Chen, L., Gan, Y., Wen, F., Hermann, B., & Prabhakaran, V. (2015). Regional homogeneity (ReHo) changes in new onset versus chronic benign epilepsy of childhood with centrotemporal spikes (BECTS): A resting state fMRI study. Epilepsy Research, 116, 79–85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, C. H., Sha, Z., Mundahl, J., Liu, S., Lu, Y., Henry, T. R., & He, B. (2015a). Thalamocortical relationship in epileptic patients with generalized spike and wave discharges--a multimodal neuroimaging study. Neuroimage Clin, 9, 117–127.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q., Yang, F., Hu, Z., Zhang, Z., Xu, Q., Dante, M., Wu, H., Li, Z., Li, Q., Li, K., & Lu, G. (2017). Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes. European Radiology, 27, 2137–2145.

    Article  PubMed  Google Scholar 

  • Zhang, Z., Xu, Q., Liao, W., Wang, Z., Li, Q., Yang, F., Zhang, Z., Liu, Y., & Lu, G. (2015b). Pathological uncoupling between amplitude and connectivity of brain fluctuations in epilepsy. Human Brain Mapping, 36, 2756–2766.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y., Yu, Y., Shinkareva, S. V., Ji, G. J., Wang, J., Wang, Z. J., Zang, Y. F., Liao, W., & Tang, Y. L. (2015). Intrinsic brain activity as a diagnostic biomarker in children with benign epilepsy with centrotemporal spikes. Human Brain Mapping, 36, 3878–3889.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (grant No, 81701678) and Guangdong Basic and Applied Basic Research Foundation (2020A1515011469).

Author information

Authors and Affiliations

Authors

Contributions

XJ.D., J. L., and Y. W. conceived and designed the whole experiment; XJ.D., Y. Y., N. W., W. T., and J. F. take responsibility for the integrity of the data, the accuracy of the data analysis and statistical data analysis; XJ.D. wrote the main manuscript text, and under took the critical interpretation of the data. All authors contributed to the final version of the paper and have read, as well as, approved the final manuscript.

Corresponding authors

Correspondence to Xi-Jian Dai or Yongjun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig S1

Total-flow causal effective connectivity differences among the IEDs, non-IEDs and NCs group Abbreviations: IEDs, Ictal epileptiform discharges; L, left; R, right; NCs, Normal controls. (JPG 3706 kb)

Supplementary Fig S2

In-flow causal effective connectivity differences among the IEDs, non-IEDs and NCs group Abbreviations: IEDs, Ictal epileptiform discharges; L, left; R, right; NCs, Normal controls. (JPG 3750 kb)

Supplementary Fig S3

Out-flow causal effective connectivity differences among the IEDs, non-IEDs and NCs group Abbreviations: IEDs, Ictal epileptiform discharges; L, left; R, right; NCs, Normal controls. (JPG 3700 kb)

Supplementary Fig S4

Int-flow causal effective connectivity differences among the IEDs, non-IEDs and NCs group Abbreviations: IEDs, Ictal epileptiform discharges; L, left; R, right; NCs, Normal controls. (JPG 3742 kb)

ESM 5

(DOCX 15 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, XJ., Yang, Y., Wang, N. et al. Reliability and availability of granger causality density in localization of Rolandic focus in BECTS. Brain Imaging and Behavior 15, 1542–1552 (2021). https://doi.org/10.1007/s11682-020-00352-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-020-00352-0

Keywords

Navigation