Skip to main content
Log in

Interictal epileptiform discharges changed epilepsy-related brain network architecture in BECTS

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

A Correction to this article was published on 20 October 2022

This article has been updated

Abstract

To investigate directed information flow of epileptiform activity in benign epilepsy with centrotemporal spikes (BECTS) during ictal epileptiform discharges (IEDs) and non-IEDs periods. In this multi-center study, a total of 188 subjects, including 50 BECTS and 138 normal children’s controls (NCs) from three different centers (Center 1: females/males, 38/55; mean age, 9.33 ± 2.6 years; Center 2: females/males,7/10; mean age, 8.59 ± 2.32 years; Center 3: females/males, 14/14; mean age, 13 ± 3.42 years) were recruited. The BECTS were classified into IEDs (females/males, 12/15; mean age, 8.15 ± 1.68 years) and non-IEDs (females/males, 10/13; mean age, 9.09 ± 1.98 years) subgroups depending on presence of central-temporal spikes from an EEG-fMRI examination. Three new methods, structural equation parametric modeling, dynamic causal modeling and granger causality density (GCD) were used to determine optimal network architectures for BECTS. Three multicentric NCs determined a reliable and consistent network architecture by structural equation parametric modeling method. Further analyses were used for IEDs and non-IEDs to determine the brain network architecture by structural equation parametric modeling, dynamic causal modeling and GCD, respectively. The brain network architecture of IEDs substate, non-IEDs substate and NCs are different. IEDs promoted the driving effect of the Rolandic areas with more output information flows, and increased the targeted effect of the top of pre-/post-central gyrus with more input information flows. The information flow arises from the Rolandic areas, and subsequently propagates to the top of pre-/post-central gyrus and thalamus. From non-IEDs status to IEDs status, the thalamus load may play an important role in the modulation and regulation of epileptiform activity. These findings shed new light on pathophysiological mechanism of directed localization of epileptiform activity in BECTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

References

  • Avanzini, G., Manganotti, P., Meletti, S., Moshe, S. L., Panzica, F., Wolf, P., & Capovilla, G. (2012). The system epilepsies: A pathophysiological hypothesis. Epilepsia, 53, 771–778.

    Article  PubMed  Google Scholar 

  • Badawy, R. A., Freestone, D. R., Lai, A., & Cook, M. J. (2012). Epilepsy: Ever-changing states of cortical excitability. Neuroscience, 222, 89–99.

    Article  CAS  PubMed  Google Scholar 

  • Bedoin, N., Ciumas, C., Lopez, C., Redsand, G., Herbillon, V., Laurent, A., & Ryvlin, P. (2012). Disengagement and inhibition of visual-spatial attention are differently impaired in children with rolandic epilepsy and Panayiotopoulos syndrome. Epilepsy & Behavior, 25, 81–91.

    Article  Google Scholar 

  • Berg, A. T., Berkovic, S. F., Brodie, M. J., Buchhalter, J., Cross, J. H., van Emde Boas, W., Engel, J., French, J., Glauser, T. A., Mathern, G. W., Moshe, S. L., Nordli, D., Plouin, P., & Scheffer, I. E. (2010). Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia, 51, 676–685.

    Article  PubMed  Google Scholar 

  • Bertram, E. H., Zhang, D., & Williamson, J. M. (2008). Multiple roles of midline dorsal thalamic nuclei in induction and spread of limbic seizures. Epilepsia, 49, 256–268.

    Article  PubMed  Google Scholar 

  • Boor, R., Jacobs, J., Hinzmann, A., Bauermann, T., Scherg, M., Boor, S., Vucurevic, G., Pfleiderer, C., Kutschke, G., & Stoeter, P. (2007). Combined spike-related functional MRI and multiple source analysis in the non-invasive spike localization of benign rolandic epilepsy. Clinical Neurophysiology, 118, 901–909.

    Article  CAS  PubMed  Google Scholar 

  • Bouilleret, V., Semah, F., Chassoux, F., Mantzaridez, M., Biraben, A., Trebossen, R., & Ribeiro, M. J. (2008). Basal ganglia involvement in temporal lobe epilepsy: A functional and morphologic study. Neurology, 70, 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Boukrina, O., Hanson, S. J., & Hanson, C. (2014). Modeling activation and effective connectivity of VWFA in same script bilinguals. Human Brain Mapping, 35, 2543–2560.

    Article  PubMed  Google Scholar 

  • Centeno, M., & Carmichael, D. W. (2014). Network connectivity in epilepsy: Resting state fMRI and EEG-fMRI contributions. Frontiers in Neurology, 5, 93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark, S., & Wilson, W. A. (1999). Mechanisms of epileptogenesis. Advances in Neurology, 79, 607–630.

    CAS  PubMed  Google Scholar 

  • Dai, X.J., Liu, H., Yang, Y., Wang, Y., Wan, F. (2021a). Brain network excitatory/inhibitory imbalance is a biomarker for drug-naive Rolandic epilepsy: A radiomics strategy. Epilepsia.

  • Dai, X. J., Xu, Q., Hu, J., Zhang, Q., Xu, Y., Zhang, Z., & Lu, G. (2019). BECTS substate classification by granger causality density based support vector machine model. Frontiers in Neurology, 10, 1201.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai, X. J., Yang, Y., Wang, N., Tao, W., Fan, J., & Wang, Y. (2021b). Reliability and availability of granger causality density in localization of Rolandic focus in BECTS. Brain Imaging and Behavior, 15, 1542–1552.

    Article  PubMed  Google Scholar 

  • Eckert, U., Metzger, C. D., Buchmann, J. E., Kaufmann, J., Osoba, A., Li, M., Safron, A., Liao, W., Steiner, J., Bogerts, B., & Walter, M. (2012). Preferential networks of the mediodorsal nucleus and centromedian-parafascicular complex of the thalamus–a DTI tractography study. Human Brain Mapping, 33, 2627–2637.

    Article  PubMed  Google Scholar 

  • Eickhoff, S. B., Grefkes, C., Fink, G. R., & Zilles, K. (2008). Functional lateralization of face, hand, and trunk representation in anatomically defined human somatosensory areas. Cerebral Cortex, 18, 2820–2830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florin, A. (2002). Physiology of sleep and wakefulness as it relates to the physiology of epilepsy. Journal of Clinical Neurophysiology Official Publication of the American Electroencephalographic Society, 19, 488.

    Article  Google Scholar 

  • Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., Collins, D. L., Cooperative, B. D., & G., . (2011). Unbiased average age-appropriate atlases for pediatric studies. NeuroImage, 54, 313–327.

    Article  PubMed  Google Scholar 

  • Fritschy, J. M. (2008). Epilepsy, E/I Balance and GABA(A) Receptor Plasticity. Frontiers in Molecular Neuroscience, 1, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grosso, S., Galimberti, D., Vezzosi, P., Farnetani, M., Di Bartolo, R. M., Bazzotti, S., Morgese, G., & Balestri, P. (2005). Childhood absence epilepsy: Evolution and prognostic factors. Epilepsia, 46, 1796–1801.

    Article  PubMed  Google Scholar 

  • Guerrini, R. (2006). Epilepsy in children. Lancet, 367, 499–524.

    Article  PubMed  Google Scholar 

  • Hanson, C., Hanson, S. J., Ramsey, J., & Glymour, C. (2013). Atypical effective connectivity of social brain networks in individuals with autism. Brain Connect, 3, 578–589.

    Article  PubMed  Google Scholar 

  • Jensen, F. E. (2011). Epilepsy as a spectrum disorder: Implications from novel clinical and basic neuroscience. Epilepsia, 52(Suppl 1), 1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Archer, J. S., Briellman, R. S., Abbott, D. F., Syngeniotis, A., Wellard, R. M., & Jackson, G. D. (2003). Benign epilepsy with centro-temporal spikes: Spike triggered fMRI shows Somato-sensory CortexActivity. Epilepsia, 44, 200–204.

    Article  PubMed  Google Scholar 

  • Kellaway, P. (2000). The electroencephalographic features of benign centrotemporal (rolandic) epilepsy of childhood. Epilepsia, 41, 1053–1056.

    Article  CAS  PubMed  Google Scholar 

  • Koelewijn, L., Hamandi, K., Brindley, L.M., Brookes, M.J., Routley, B.C., Muthukumaraswamy, S.D., Williams, N., Thomas, M.A., Kirby, A., Naude, J., Gibbon, F., Singh, K.D., 2015. Resting-state oscillatory dynamics in sensorimotor cortex in benign epilepsy with centro-temporal spikes and typical brain development. Hum Brain Mapp 36, 3935-3949

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, Y. J., Hwang, S. K., & Kwon, S. (2017). The clinical spectrum of benign epilepsy with centro-temporal spikes: A challenge in categorization and predictability. Journal of Epilepsy Research, 7, 1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lengler, U., Kafadar, I., Neubauer, B. A., & Krakow, K. (2007). fMRI correlates of interictal epileptic activity in patients with idiopathic benign focal epilepsy of childhood. A simultaneous EEG-functional MRI study. Epilepsy Research, 75, 29–38.

    Article  PubMed  Google Scholar 

  • Manelis, A., Almeida, J. R., Stiffler, R., Lockovich, J. C., Aslam, H. A., & Phillips, M. L. (2016). Anticipation-related brain connectivity in bipolar and unipolar depression: A graph theory approach. Brain, 139, 2554–2566.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manelis, A., & Reder, L. M. (2014). Effective connectivity among the working memory regions during preparation for and during performance of the n-back task. Frontiers in Human Neuroscience, 8, 593.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCormick, D. A., & Contreras, D. (2001). On the cellular and network bases of epileptic seizures. Annual Review of Physiology, 63, 815–846.

    Article  CAS  PubMed  Google Scholar 

  • Mills-Finnerty, C., Hanson, C., & Hanson, S. J. (2014). Brain network response underlying decisions about abstract reinforcers. NeuroImage, 103, 48–54.

    Article  PubMed  Google Scholar 

  • Monjauze, C., Broadbent, H., Boyd, S. G., Neville, B. G., & Baldeweg, T. (2011). Language deficits and altered hemispheric lateralization in young people in remission from BECTS. Epilepsia, 52, e79-83.

    Article  PubMed  Google Scholar 

  • Mumford, J. A., & Ramsey, J. D. (2014). Bayesian networks for fMRI: A primer. NeuroImage, 86, 573–582.

    Article  PubMed  Google Scholar 

  • Norden, A. D., & Blumenfeld, H. (2002). The role of subcortical structures in human epilepsy. Epilepsy & Behavior, 3, 219–231.

    Article  Google Scholar 

  • Overvliet, G. M., Aldenkamp, A. P., Klinkenberg, S., Vles, J. S., & Hendriksen, J. (2011). Impaired language performance as a precursor or consequence of Rolandic epilepsy? Journal of the Neurological Sciences, 304, 71–74.

    Article  CAS  PubMed  Google Scholar 

  • Panayiotopoulos, C. P., Michael, M., Sanders, S., Valeta, T., & Koutroumanidis, M. (2008). Benign childhood focal epilepsies: Assessment of established and newly recognized syndromes. Brain, 131, 2264–2286.

    Article  PubMed  Google Scholar 

  • Phillips, M. L., & Swartz, H. A. (2014). A critical appraisal of neuroimaging studies of bipolar disorder: Toward a new conceptualization of underlying neural circuitry and a road map for future research. American Journal of Psychiatry, 171, 829–843.

    Article  PubMed  Google Scholar 

  • Rakhade, S. N., & Jensen, F. E. (2009). Epileptogenesis in the immature brain: Emerging mechanisms. Nature Reviews. Neurology, 5, 380–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsey, J. D., Hanson, S. J., Glymour, C. (2011). Multi-subject search correctly identifies causal connections and most causal directions in the DCM models of the Smith, , et al. simulation study. NeuroImage, 58, 838–848.

    Article  PubMed  Google Scholar 

  • Ramsey, J. D., Hanson, S. J., Hanson, C., Halchenko, Y. O., Poldrack, R. A., & Glymour, C. (2010). Six problems for causal inference from fMRI. NeuroImage, 49, 1545–1558.

    Article  CAS  PubMed  Google Scholar 

  • Shipp, S. (2003). The functional logic of cortico-pulvinar connections. Philosophical Transactions of the Royal Society of London Series B, 358, 1605–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vannest, J., Tenney, J. R., Gelineau-Morel, R., Maloney, T., & Glauser, T. A. (2015). Cognitive and behavioral outcomes in benign childhood epilepsy with centrotemporal spikes. Epilepsy & Behavior, 45, 85–91.

    Article  Google Scholar 

  • Verrotti, A., Filippini, M., Matricardi, S., Agostinelli, M. F., & Gobbi, G. (2014). Memory impairment and Benign Epilepsy with centrotemporal spike (BECTS): A growing suspicion. Brain and Cognition, 84, 123–131.

    Article  PubMed  Google Scholar 

  • Yu, T., Wang, X., Li, Y., Zhang, G., Worrell, G., Chauvel, P., Ni, D., Qiao, L., Liu, C., Li, L., Ren, L., & Wang, Y. (2018). High-frequency stimulation of anterior nucleus of thalamus desynchronizes epileptic network in humans. Brain, 141, 2631–2643.

    PubMed  Google Scholar 

  • Zhang, D., Snyder, A. Z., Fox, M. D., Sansbury, M. W., Shimony, J. S., & Raichle, M. E. (2008). Intrinsic functional relations between human cerebral cortex and thalamus. Journal of Neurophysiology, 100, 1740–1748.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q., Yang, F., Hu, Z., Zhang, Z., Xu, Q., Dante, M., Wu, H., Li, Z., Li, Q., Li, K., & Lu, G. (2017). Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes. European Radiology, 27, 2137–2145.

    Article  PubMed  Google Scholar 

  • Zhang, Z., Liao, W., Chen, H., Mantini, D., Ding, J. R., Xu, Q., Wang, Z., Yuan, C., Chen, G., Jiao, Q., & Lu, G. (2011). Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain, 134, 2912–2928.

    Article  PubMed  Google Scholar 

  • Zhao, T., Liao, X., Fonov, V. S., Wang, Q., Men, W., Wang, Y., Qin, S., Tan, S., Gao, J. H., Evans, A., Tao, S., Dong, Q., & He, Y. (2019). Unbiased age-specific structural brain atlases for Chinese pediatric population. NeuroImage, 189, 55–70.

    Article  PubMed  Google Scholar 

  • Zhu, Y. H., Yu, Y., Shinkareva, S. V., Ji, G. J., Wang, J., Wang, Z. J., Zang, Y. F., Liao, W., & Tang, Y. L. (2015). Intrinsic brain activity as a diagnostic biomarker in children with benign epilepsy with centrotemporal spikes. Human Brain Mapping, 36, 3878–3889.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (Grant No, 2020M670052), Guangdong Basic and Applied Basic Research Foundation (Grant No, 2020A1515011469) and Sanming Project of Medicine in Shenzhen (Grant No, SZSM201812052).

Funding

The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had final responsibility for the decision to submit for publication.

Author information

Authors and Affiliations

Authors

Contributions

XJ-D conceived and designed the whole experiment. XJ-D, YY collected the data. XJ-D, YY and YW take responsibility for review and editing, integrity of the data, the accuracy of the data analysis, and the statistical data analysis. XJ-D wrote the main manuscript text and under took the critical interpretation of the data. All authors contributed to the final version of the paper and have read, as well as approved the final manuscript.

Corresponding authors

Correspondence to Xi-jian Dai or Yongjun Wang.

Ethics declarations

Statement

We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Xj., Yang, Y. & Wang, Y. Interictal epileptiform discharges changed epilepsy-related brain network architecture in BECTS. Brain Imaging and Behavior 16, 909–920 (2022). https://doi.org/10.1007/s11682-021-00566-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-021-00566-w

Keywords

Navigation