Skip to main content

Advertisement

Log in

Mapping correlations of psychological and structural connectome properties of the dataset of the human connectome project with the maximum spanning tree method

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Genome-wide association studies (GWAS) opened new horizons in genomics and medicine by discovering novel genetic factors in numerous health conditions. The analogous analysis of the correlations of large quantities of psychological and brain imaging measures may yield similarly striking results in the brain science. Smith et al. (Nat Neurosci. 18(11): 1565–1567, 2015) presented a study of the associations between MRI-detected resting-state functional connectomes and behavioral data, based on the Human Connectome Project’s (HCP) data release. Here we analyze the pairwise correlations between 717 psychological-, anatomical- and structural connectome–properties, based also on the Human Connectome Project’s 500-subject dataset. For the connectome properties, we have focused on the structural (or anatomical) connectomes, instead of the functional connectomes. For the structural connectome analysis we have computed and publicly deposited structural braingraphs at the site http://braingraph.org. Numerous non-trivial and hard-to-compute graph-theoretical parameters (like minimum bisection width, minimum vertex cover, eigenvalue gap, maximum matching number, maximum fractional matching number) were computed for braingraphs of each subject, gained from the left- and right hemispheres and the whole brain. The correlations of these parameters, as well as other anatomical and behavioral measures were detected and analyzed. For discovering and visualizing the most interesting correlations in the 717 x 717 matrix, we have applied the maximum spanning tree method. Apart from numerous natural correlations, which describe parameters computable or approximable from one another, we have found several significant, novel correlations in the dataset, e.g., between the score of the NIH Toolbox 9-hole Pegboard Dexterity Test and the maximum weight graph theoretical matching in the left hemisphere. We also have found correlations described very recently and independently from the HCP-dataset: e.g., between gambling behavior and the number of the connections leaving the insula: these already known findings independently validate the power of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The MRI and the behavioral and demographic data the Human Connectome Project (HCP) can be accessed at https://db.humanconnectome.org/. The braingraphs, computed by us from the HCP data is available at the site http://braingraph.org/download-pit-group-connectomes/, without any registration. The interactive version of Fig. 1 can be viewed with node-labels at http://pitgroup.org/static/graphmlviewer/index.html?src=correl_spanning_tree.graphml; the data of the spanning tree is given in Supplementary Table S1. The similar spanning tree with Spearman’s rank correlations can be viewed at http://pitgroup.org/static/graphmlviewer/index.html?src=correl_spanning_tree_rank.graphml; the data of the spanning tree is given in Supplementary Table S2. The interactive figures can be viewed in any contemporary browser, in case of difficulties, we suggest using Firefox or Chrome for viewing.

References

  • Bouchaud, J.-P., & Potters, M. (2003). Theory of financial risk and derivative pricing: from statistical physics to risk management. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Brida, J.G., Deidda, M., Garrido, N., Manuela, P. (2015). Analyzing the performance of the south tyrolean hospitality sector: a dynamic approach. International Journal of Tourism Research, 17(2), 196–208.

    Article  Google Scholar 

  • DeYoung, C.G., Hirsh, J.B., Shane, M.S., Papademetris, X., Rajeevan, N., Gray, J.R. (2010). Testing predictions from personality neuroscience. brain structure and the big five. Psychological Science, 21, 820–828.

    Article  PubMed  Google Scholar 

  • Fischl, B. (2012). Freesurfer. Neuroimage, 62(2), 774–781.

    Article  PubMed  Google Scholar 

  • Gershon, R.C., Wagster, M. V., Hendrie, H. C., Fox, N. A., Cook, K. F., Nowinski, C. J. (2013). Nih toolbox for assessment of neurological and behavioral function. Neurology, 80, S2–S6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ha, H.-Y., Chen, S.-C., Chen, M. (2015). Fc-mst: Feature correlation maximum spanning tree for multimedia concept classification. In 2015 IEEE International Conference on Semantic Computing (ICSC) (pp. 276–283): IEEE.

  • Heimo, T., Kaski, K., Saramäki, J. (2009). Maximal spanning trees, asset graphs and random matrix denoising in the analysis of dynamics of financial networks. Physica A: Statistical Mechanics and its Applications, 388(2), 145–156.

    Article  Google Scholar 

  • Jr., P.T.C., & McCrae, R.R. (1992). Revised NEO personality inventory and NEO Five-Factor inventory professional manual. Psychological Assessment Resources, Inc.

  • Lawler, E.L. (1976). Combinatorial optimization: networks and matroids. USA: Courier Dover Publications.

    Google Scholar 

  • Manolio, T.A. (2010). Genomewide association studies and assessment of the risk of disease. The New England journal of medicine, 363, 166–176.

    Article  CAS  PubMed  Google Scholar 

  • Mantegna, R.N. (1999). Hierarchical structure in financial markets. The European Physical Journal B-Condensed Matter and Complex Systems, 11(1), 193–197.

    Article  CAS  Google Scholar 

  • McNab, J.A., Edlow, B.L., Witzel, T., Huang, S.Y., Bhat, H., Heberlein, K., Feiweier, T., Liu, K., Keil, B., Cohen-Adad, J., Tisdall, M.D., Folkerth, R.D., Kinney, H.C., Wald, L.L. (2013). The Human Connectome Project and beyond: initial applications of 300 mT/m gradients. NeuroImage, 80, 234–245.

    Article  PubMed  Google Scholar 

  • Petry, N.M. (2002). Discounting of delayed rewards in substance abusers: relationship to antisocial personality disorder. Psychopharmacology, 162, 425–432.

    Article  CAS  PubMed  Google Scholar 

  • Riccelli, R., Toschi, N., Nigro, S., Terracciano, A., Passamonti, L. (2017). Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality. Social Cognitive and Affective Neuroscience, 12, 671–684.

    PubMed  PubMed Central  Google Scholar 

  • Smith, S.M., Nichols, T.E., Vidaurre, D., Winkler, A.M., Behrens, T.E.J., Glasser, M.F., Ugurbil, K., Barch, D.M., Van Essen, D.C., Miller, K.L. (2015). A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nature neuroscience, 18, 1565–1567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swann, A.C., Bjork, J.M., Moeller, F.G., Dougherty, D.M. (2002). Two models of impulsivity: relationship to personality traits and psychopathology. Biological psychiatry, 51, 988–994.

    Article  PubMed  Google Scholar 

  • Szalkai, B., & Grolmusz, V. (2018). Human sexual dimorphism of the relative cerebral area volumes in the data of the human connectome project, European Journal of Anatomy, 22,(3).

  • Szalkai, B., Varga, B., Grolmusz, V. (2015). Graph theoretical analysis reveals: Women’s brains are better connected than men’s. PLoS One, 10(7), e0130045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szalkai, B., Varga, B., Grolmusz, V. (2016). The graph of our mind. arXiv:1603.00904.

  • Szalkai, B., Varga, B., Grolmusz, V. (2017). Brain size bias-compensated graph-theoretical parameters are also better in women’s connectomes. Brain Imaging and Behavior. Also in arXiv:1512.01156.

  • Weintraub, S., Dikmen, S.S., Heaton, R.K., Tulsky, D.S., Zelazo, P.D., Bauer, P.J., Carlozzi, N.E., Slotkin, J., Blitz, D., Wallner-Allen, K., et al. (2013). Cognition assessment using the nih toolbox. Neurology, 80(11 Supplement 3), S54–S64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Witelson, S.F., Beresh, H., Kigar, D.L. (2006). Intelligence and brain size in 100 postmortem brains: sex, lateralization and age factors. Brain: A Journal of Neurology, 129(Pt 2), 386–398.

    Article  CAS  Google Scholar 

  • Wonnacott, T.H., & Wonnacott, R.J. (1972). Introductory statistics Vol. 19690. New York: Wiley.

    Google Scholar 

  • živković, J., Mitrović, M., Tadić, B. (2009). Correlation patterns in gene expressions along the cell cycle of yeast, volume Complex Networks of Studies in Computational Intelligence. Berlin: Springer.

    Google Scholar 

Download references

Acknowledgments

Data were provided in part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. VG was partially funded the NKFI-126472 grant of the National Research, Development and Innovation Office of Hungary.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Balázs Szalkai or Vince Grolmusz.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interests Statement

The authors declare no conflicts of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 135 KB)

(PDF 153 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szalkai, B., Varga, B. & Grolmusz, V. Mapping correlations of psychological and structural connectome properties of the dataset of the human connectome project with the maximum spanning tree method. Brain Imaging and Behavior 13, 1185–1192 (2019). https://doi.org/10.1007/s11682-018-9937-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-018-9937-6

Keywords

Navigation