Skip to main content

Advertisement

Log in

1H MRS spectroscopy in preclinical autosomal dominant Alzheimer disease

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

1H magnetic resonance spectroscopy (MRS) can reveal changes in brain biochemistry in vivo in humans and has been applied to late onset Alzheimer disease (AD). Carriers of mutations for autosomal dominant Alzheimer disease (ADAD) may show changes in levels of metabolites prior to the onset of clinical symptoms. Proton MR spectra were acquired at 1.5 T for 16 cognitively asymptomatic or mildly symptomatic mutation carriers (CDR < 1) and 11 non-carriers as part of a comprehensive cross-sectional study of preclinical ADAD. Levels of N-acetyl-aspartate+N-acetyl-aspartyl-glutamate (NAA), glutamate/glutamine (Glx), creatine/phosphocreate (Cr), choline (Cho), and myo-inositol (mI) in the left and right anterior cingulate and midline posterior cingulate and precuneus were compared between mutation carriers (MCs) and non-carriers (NCs) using multivariate analysis of variance with age as a covariate. Among MCs, correlations between metabolite levels and time until expected age of dementia diagnosis were calculated. MCs had significantly lower levels of NAA and Glx in the left pregenual anterior cingulate cortex, and lower levels of NAA and higher levels of mI and Cho in the precuneus compared to NCs. Increased levels of mI were seen in these regions in association with increased proximity to expected age of dementia onset. MRS shows effects of ADAD similar to those seen in late onset AD even during the preclinical period including lower levels of NAA and higher levels of mI. These indices of neuronal and glial dysfunction might serve as surrogate outcome measures in prevention studies of putative disease-modifying agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alger, J. (2011). Quantitative proton magnetic resonance spectroscopy and spectroscopic imaging of the brain: a didactic review. Topics in Magnetic Resonance Imaging, 21(2), 115–128. https://doi.org/10.1097/RMR.0b013e31821e568f.Quantitative.

    Article  Google Scholar 

  • Baslow, M. H. (2016). An answer to “the nagging question of the function of N-Acetylaspartylglutamate”. Neuroscience Communications, 2–7. https://doi.org/10.14800/nc.844.

  • Bateman, R. J., Xiong, C., Benzinger, T. L. S., Fagan, A. M., Goate, A., Fox, N. C., … & Dominantly Inherited Alzheimer Network. (2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. The New England Journal of Medicine, 367(9), 795–804. https://doi.org/10.1056/NEJMoa1202753.

  • Fisher, S. K., Novak, J. E., & Agranoff, B. W. (2002). Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. Journal of Neurochemistry, 82(4), 736–754. https://doi.org/10.1046/j.1471-4159.2002.01041.x.

    Article  CAS  PubMed  Google Scholar 

  • Frederick, B. D., Kyoon, I., Satlin, A., Heup, K., Kim, M. J., Yurgelun-todd, D. A., …, & Renshaw, P. F. (2004). In vivo proton magnetic resonance spectroscopy of the temporal lobe in Alzheimer’s disease, 28, 1313–1322. https://doi.org/10.1016/j.pnpbp.2004.08.013.

  • Godbolt, A. K., Waldman, A. D., MacManus, D. G., Schott, J. M., Frost, C., Cipolotti, L., …, & Rossor, M. N. (2006). MRS shows abnormalities before symptoms in familial Alzheimer disease. Neurology, 66, 718–722. https://doi.org/10.1212/01.wnl.0000201237.05869.df.

  • Hajek, M., & Dezortova, M. (2008). Introduction to clinical in vivo MR spectroscopy. European Journal of Radiology, 67(2), 185–193. https://doi.org/10.1016/j.ejrad.2008.03.002.

    Article  PubMed  Google Scholar 

  • Huang, D., Liu, D., Yin, J., Qian, T., Shrestha, S., & Ni, H. (2016). Glutamate-glutamine and GABA in brain of normal aged and patients with cognitive impairment. European Radiology, 1–7. https://doi.org/10.1007/s00330-016-4669-8.

  • Jack, C. R., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., …, & Trojanowski, J. Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology, 9(1), 119–128. https://doi.org/10.1016/S1474-4422(09)70299-6.

  • Jack, C. R., Vemuri, P., Wiste, H. J., Weigand, S. D., Aisen, P. S., Trojanowski, J. Q., …, & Alzheimer’s Disease Neuroimaging Initiative. (2011). Evidence for ordering of Alzheimer disease biomarkers. Archives of Neurology, 68(12), 1526–35. https://doi.org/10.1001/archneurol.2011.183.

  • Jack, C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., …, & Trojanowski, J. Q. (2013). Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurology, 12(2), 207–216. https://doi.org/10.1016/S1474-4422(12)70291-0.

  • Kantarci, K., Jack, C. R. Jr., Xu, Y. C., Campeau, N. G., O’Brien, P. C., Smith, G. E., …, & Petersen R.C.. (2000). Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease, a 1H MRS study. Neurology, 55(2), 210–217.

  • Kantarci, K., Knopman, D. S., Dickson, D. W., Parisi, J. E., Whitwell, J. L., Weigand, S. D., …, & Jack, C. R. (2008). Alzheimer disease: Postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. Radiology, 248(1), 210–20. https://doi.org/10.1148/radiol.2481071590.

  • Katzman, R., Terry, R., DeTeresa, R., Brown, T., Davies, P., Fuld, P., …, & Peck, A. (1988). Clinical, pathological, and neurochemical changes in dementia: A subgroup with preserved mental status and numerous neocortical plaques. Annals of Neurology, 23(2), 138–144. https://doi.org/10.1002/ana.410230206.

  • Metastasio, A., Rinaldi, P., Tarducci, R., Mariani, E., Feliziani, F. T., Cherubini, A., …, & Mecocci, P. (2006). Conversion of MCI to dementia: role of proton magnetic resonance spectroscopy. Neurobiology of Aging, 27(7), 926–932. https://doi.org/10.1016/j.neurobiolaging.2005.05.002.

  • Minati, L., Grisoli, M., & Bruzzone, M. G. (2007). MR spectroscopy, functional MRI, and diffusion-tensor imaging in the aging brain: a conceptual review. Journal of Geriatric Psychiatry and Neurology, 20(1), 3–21. https://doi.org/10.1177/0891988706297089.

    Article  CAS  PubMed  Google Scholar 

  • Modrego, P. J., Fayed, N., & Pina, M. A. (2005). Conversion from mild cognitive impairment to probable Alzheimer’s disease predicted by brain magnetic resonance spectroscopy. The American Journal of Psychiatry, 162(4), 667–675. https://doi.org/10.1176/appi.ajp.162.4.667.

    Article  PubMed  Google Scholar 

  • Modrego, P. J., Fayed, N., & Sarasa, M. (2011). Magnetic resonance spectroscopy in the prediction of early conversion from amnestic mild cognitive impairment to dementia: A prospective cohort study. BMJ Open, 1(1). https://doi.org/10.1136/bmjopen-2010-000007.

  • Morris, J. C. (1997). Clinical dementia rating: A reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. International Psychogeriatrics, 9(Supplement S1), 173–176. https://doi.org/10.1017/S1041610297004870.

    Article  PubMed  Google Scholar 

  • Murray, M. E., Przybelski, S. A., Lesnick, T. G., Liesinger, A. M., Spychalla, A., Zhang, B., …, & Kantarci, K. (2014). Early Alzheimer’s disease neuropathology detected by proton MR spectroscopy. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(49), 16247–55. https://doi.org/10.1523/JNEUROSCI.2027-14.2014.

  • O’Neill, J., Tobias, M. C., Hudkins, M., & London, E. D. (2015). Glutamatergic neurometabolites during early abstinence from chronic methamphetamine abuse. International Journal of Neuropsychopharmacology, 18(3), 1–9. https://doi.org/10.1093/ijnp/pyu059.

    Article  Google Scholar 

  • Provencher, S. W. (2001). Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR in Biomedicine, 14(4), 260–264. https://doi.org/10.1002/nbm.698.

    Article  CAS  PubMed  Google Scholar 

  • Ringman, J. M., Younkin, S. G., Pratico, D., Seltzer, W., Cole, G. M., Geschwind, D. H., …, & Cummings, J. L. (2008). Biochemical markers in persons with preclinical familial Alzheimer disease. Neurology, 71(2), 85–92. https://doi.org/10.1212/01.wnl.0000303973.71803.81.

  • Ryman, D. C., Acosta-Baena, N., Aisen, P. S., Bird, T., Danek, A., Fox, N. C., …, & Bateman, R. J. (2014). Symptom onset in autosomal dominant Alzheimer disease: a systematic review and meta-analysis. Neurology, 83(3), 253–260. https://doi.org/10.1212/WNL.0000000000000596.

  • Scheltens, P., Blennow, K., Breteler, M. M. B., de Strooper, B., Frisoni, G. B., Salloway, S., Van der Flier, & aria, W. M. (2016). Alzheimer’s disease. Lancet (London, England), 388(10043), 505–517. https://doi.org/10.1016/S0140-6736(15)01124-1.

    Article  CAS  Google Scholar 

  • Seese, R. R., O’Neill, J., Hudkins, M., Siddarth, P., Levitt, J., Tseng, B., …, & Caplan, R. (2011). Proton magnetic resonance spectroscopy and thought disorder in childhood schizophrenia. Schizophrenia Research, 133(1–3), 82–90.https://doi.org/10.1016/j.schres.2011.07.011.

  • Shattuck, D. W., Sandor-Leahy, S. R., Schaper, K. A., Rottenberg, D. A., & Leahy, R. M. (2001). Magnetic resonance image tissue classification using a partial volume model. NeuroImage, 13(5), 856–876. https://doi.org/10.1006/nimg.2000.0730.

    Article  CAS  Google Scholar 

  • Soares, D. P., & Law, M. (2009). Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clinical Radiology, 64(1), 12–21. https://doi.org/10.1016/j.crad.2008.07.002.

    Article  CAS  PubMed  Google Scholar 

  • Targosz-gajniak, M. G., Siuda, J. S., Wicher, M. M., Banasik, T. J., Bujak, M. A., Augusciak-duma, A. M., & Opala, G. (2013). Magnetic resonance spectroscopy as a predictor of conversion of mild cognitive impairment to dementia. Journal of the Neurological Sciences, 335(1–2), 58–63. https://doi.org/10.1016/j.jns.2013.08.023.

    Article  PubMed  Google Scholar 

  • Wang, H., Tan, L., Wang, H. F., Liu, Y., Yin, R. H., Wang, W. Y., …, & Yu, J. T. (2015). Magnetic resonance spectroscopy in Alzheimer’s disease: systematic review and meta-analysis. Journal of Alzheimer's Disease, 46(4), 1049–1070. https://doi.org/10.3233/JAD-143225.

  • Zhang, N., Song, X., Bartha, R., Beyea, S., D'Arcy, R., Zhang, Y., & Rockwood, K. (2014). Advances in high-field magnetic resonance spectroscopy in Alzheimer’s disease. Current Alzheimer Research, 2014(11), 367–388.

Download references

Funding

This research was supported by the National Institutes of Health under award numbers P50 AG0005142, K08 AG022228, P50 AG016570.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Joe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joe, E., Medina, L.D., Ringman, J.M. et al. 1H MRS spectroscopy in preclinical autosomal dominant Alzheimer disease. Brain Imaging and Behavior 13, 925–932 (2019). https://doi.org/10.1007/s11682-018-9913-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-018-9913-1

Keywords

Navigation