Combined structural and functional patterns discriminating upper limb motor disability in multiple sclerosis using multivariate approaches

Abstract

A structural or functional pattern of neuroplasticity that could systematically discriminate between people with impaired and preserved motor performance could help us to understand the brain networks contributing to preservation or compensation of behavior in multiple sclerosis (MS). This study aimed to (1) investigate whether a machine learning-based technique could accurately classify MS participants into groups defined by upper extremity function (i.e. motor function preserved (MP) vs. motor function impaired (MI)) based on their regional grey matter measures (GMM, cortical thickness and deep grey matter volume) and inter-regional functional connection (FC), (2) investigate which features (GMM, FC, or GMM + FC) could classify groups more accurately, and (3) identify the multivariate patterns of GMM and FCs that are most discriminative between MP and MI participants, and between each of these groups and the healthy controls (HCs). With 26 MP, 25 MI, and 21 HCs (age and sex matched) underwent T1-weighted and resting-state functional MRI at 3 T, we applied support vector machine (SVM) based classification to learn discriminant functions indicating regions in which GMM or between which FCs were most discriminative between groups. This study demonstrates that there exist structural and FC patterns sufficient for correct classification of upper limb motor ability of people with MS. The classifier with GMM + FC features yielded the highest accuracy of 85.61 % (p < 0.001) to distinguish between the MS groups using leave-one-out cross-validation. It suggests that a machine-learning approach combining structural and functional features is useful for identifying the specific neural substrates that are necessary and sufficient to preserve motor function among people with MS.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Anand, A., Li, Y., Wang, Y., Wu, J., Gao, S., Bukhari, L., et al. (2005). Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biological Psychiatry, 57(10), 1079–1088.

    Article  PubMed  Google Scholar 

  2. Audoin, B., Ibarrola, D., Malikova, I., Soulier, E., Confort-Gouny, S., Duong, M. V. A., et al. (2007). Onset and underpinnings of white matter atrophy at the very early stage of multiple sclerosis–a two-year longitudinal MRI/MRSI study of corpus callosum. Multiple Sclerosis (Houndmills, Basingstoke, England), 13(1), 41–51.

    CAS  Article  Google Scholar 

  3. Barkhof, F. (2002). The clinico-radiological paradox in multiple sclerosis revisited. Current Opinion in Neurology, 15(3), 239–245.

    Article  PubMed  Google Scholar 

  4. Basile, B., Castelli, M., Monteleone, F., Nocentini, U., Caltagirone, C., Centonze, D., et al. (2013). Functional connectivity changes within specific networks parallel the clinical evolution of multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England), 20(8), 1050–1057.

    Article  Google Scholar 

  5. Bendfeldt, K., Klöppel, S., Nichols, T. E., Smieskova, R., Kuster, P., Traud, S., et al. (2012). Multivariate pattern classification of gray matter pathology in multiple sclerosis. NeuroImage, 60(1), 400–408.

    Article  PubMed  Google Scholar 

  6. Brodersen, K. H., Ong, C. S., Stephan, K. E., & Buhmann, J. M. (2010). The balanced accuracy and its posterior distribution. In Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR10), 3121-3124. Washington, DC: IEEE Computer Society, doi:10.1109/ICPR.2010.764

  7. Calabrese, M., Atzori, M., Bernardi, V., Morra, A., Romualdi, C., Rinaldi, L., et al. (2007). Cortical atrophy is relevant in multiple sclerosis at clinical onset. Journal of Neurology, 254(9), 1212–1220.

    Article  PubMed  Google Scholar 

  8. Calabrese, M., Rinaldi, F., Grossi, P., Mattisi, I., Bernardi, V., Favaretto, A., et al. (2010). Basal ganglia and frontal/parietal cortical atrophy is associated with fatigue in relapsing-remitting multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England), 16(10), 1220–1228.

    Article  Google Scholar 

  9. Chang, Y.-W., & Lin, C.-J. (2008). Feature ranking using linear svm. Journal of Machine Learning Research: Workshop and Conference Proceedings, 3, 53–64.

  10. Chang, C., & Lin, C. (2011). LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2, 1–39.

    Article  Google Scholar 

  11. Charil, A., Dagher, A., Lerch, J. P., Zijdenbos, A. P., Worsley, K. J., & Evans, A. C. (2007). Focal cortical atrophy in multiple sclerosis: relation to lesion load and disability. NeuroImage, 34(2), 509–517.

    Article  PubMed  Google Scholar 

  12. Cifelli, A., Arridge, M., Jezzard, P., Esiri, M. M., Palace, J., & Matthews, P. M. (2002). Thalamic neurodegeneration in multiple sclerosis. Annals of Neurology, 52(5), 650–653.

    Article  PubMed  Google Scholar 

  13. Cover, K. S., Vrenken, H., Geurts, J. J. G., Van Oosten, B. W., Jelles, B., Polman, C. H., et al. (2006). Multiple sclerosis patients show a highly significant decrease in alpha band interhemispheric synchronization measured using MEG. NeuroImage, 29(3), 783–788.

    Article  PubMed  Google Scholar 

  14. Crespy, L., Zaaraoui, W., Lemaire, M., Rico, A., Faivre, A., Reuter, F., et al. (2011). Prevalence of grey matter pathology in early multiple sclerosis assessed by magnetization transfer ratio imaging. PloS One, 6(9), 2–7.

    Article  Google Scholar 

  15. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194.

    CAS  PubMed  Google Scholar 

  16. de Kwaasteniet, B., Ruhe, E., Caan, M., Rive, M., Olabarriaga, S., Groefsema, M., et al. (2013). Relation between structural and functional connectivity in major depressive disorder. Biological Psychiatry, 74(1), 40–47.

    Article  PubMed  Google Scholar 

  17. Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.

    Article  PubMed  Google Scholar 

  18. Dogonowski, A. M., Siebner, H. R., Soelberg Sørensen, P., Paulson, O. B., Dyrby, T. B., Blinkenberg, M., & Madsen, K. H. (2013). Resting-state connectivity of pre-motor cortex reflects disability in multiple sclerosis. Acta Neurologica Scandinavica, 128(5), 328–335.

    PubMed  Google Scholar 

  19. Dosenbach, N. U. F., Nardos, B., Cohen, A. L., Fair, D. A., Power, D., Church, J. A., et al. (2010). Prediction of Individua brain maturity using fMRI. Science, 329(5997), 1358–1361.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Douaud, G., Behrens, T. E., Poupon, C., Cointepas, Y., Jbabdi, S., Gaura, V., et al. (2009). In vivo evidence for the selective subcortical degeneration in Huntington’s disease. NeuroImage, 46(4), 958–966.

    Article  PubMed  Google Scholar 

  21. Evangelou, N., Konz, D., Esiri, M. M., Smith, S., Palace, J., & Matthews, P. M. (2000). Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain, 123(9), 1845–1849.

    Article  PubMed  Google Scholar 

  22. Faivre, A., Rico, A., Zaaraoui, W., Crespy, L., Reuter, F., Wybrecht, D., et al. (2012). Assessing brain connectivity at rest is clinically relevant in early multiple sclerosis. Multiple Sclerosis Journal, 18(9), 1251–1258.

    Article  PubMed  Google Scholar 

  23. Feis, D. L., Brodersen, K. H., von Cramon, D. Y., Luders, E., & Tittgemeyer, M. (2013). Decoding gender dimorphism of the human brain using multimodal anatomical and diffusion MRI data. NeuroImage, 70, 250–257.

    Article  PubMed  Google Scholar 

  24. Ferreira, L. K., & Busatto, G. F. (2013). Resting-state functional connectivity in normal brain aging. Neuroscience and Biobehavioral Reviews, 37(3), 384–400.

    Article  PubMed  Google Scholar 

  25. Filippi, M., & Agosta, F. (2010). Imaging biomarkers in multiple sclerosis. Journal of Magnetic Resonance Imaging, 31(4), 770–788.

    CAS  Article  PubMed  Google Scholar 

  26. Filippi, M., Rovaris, M., Inglese, M., Barkhof, F., De Stefano, N., Smith, S., et al. (2004). Interferon beta-1a for brain tissue loss in patients at presentation with syndromes suggestive of multiple sclerosis: a randomised, double-blind, placebo-controlled trial. The Lancet, 364(9444), 1489–1496.

    CAS  Article  Google Scholar 

  27. Filippi, M., Preziosa, P., & Rocca, M. A. (2014). Magnetic resonance outcome measures in multiple sclerosis trials: time to rethink? Current Opinion in Neurology, 27(3), 290–299.

    Article  PubMed  Google Scholar 

  28. Filippi, M., Valsasina, P., Vacchi, L., Leavitt, V., Comi, G., Falini, A., & Rocca, M. (2015). Consistent decreased functional connectivity among the main cortical and subcortical functional networks in MS: relationship with disability and cognitive impairment. Neurology, 84(14), Supplement P6.133.

  29. Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences, 97(20), 11050–11055.

    CAS  Article  Google Scholar 

  30. Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2), 195–207.

    CAS  Article  PubMed  Google Scholar 

  31. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.

    CAS  Article  PubMed  Google Scholar 

  32. Fix, J. D. (2008). Basal Ganglia and the Striatal Motor System. Neuroanatomy (Board Review Series) (4th ed.), Baltimore: Wulters Kluwer & Lippincott Wiliams & Wilkins, 274–281.

  33. Fox, M. D., & Greicius, M. (2010). Clinical applications of resting state functional connectivity. Frontiers in Systems Neuroscience, 4, 19.

    PubMed  PubMed Central  Google Scholar 

  34. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8(9), 700–711.

    CAS  PubMed  Google Scholar 

  35. Francis, S. J. (2004). Automatic lesion identification in MRI of multiple sclerosis patients. Montreal: McGill University.

    Google Scholar 

  36. Gallo, A., Esposito, F., Sacco, R., & Rosa, N. (2012). Visual resting-state network in relapsing- remitting MS with and without previous optic neuritis. Neurology, 79, 1458–1465.

    Article  PubMed  Google Scholar 

  37. Gean-Marton, A. D., Vezina, L. G., Marton, K. I., Stimac, G. K., Peyster, R. G., Taveras, J. M., & Davis, K. R. (1991). Abnormal corpus callosum: a sensitive and specific indicator of multiple sclerosis. Radiology, 180(1), 215–221.

    CAS  Article  PubMed  Google Scholar 

  38. Geurts, J. J., & Barkhof, F. (2008). Grey matter pathology in multiple sclerosis. The Lancet Neurology, 7(9), 841–851.

    Article  PubMed  Google Scholar 

  39. Geurts, J. J., Calabrese, M., Fisher, E., & Rudick, R. A. (2012). Measurement and clinical effect of grey matter pathology in multiple sclerosis. The Lancet Neurology, 11(12), 1082–1092.

    Article  PubMed  Google Scholar 

  40. Giorgio, A., Battaglini, M., Smith, S. M., & De Stefano, N. (2008). Brain atrophy assessment in multiple sclerosis: importance and limitations. Neuroimaging Clinics of North America, 18(4), 675–686.

    Article  PubMed  Google Scholar 

  41. Gould, I. C., Shepherd, A. M., Laurens, K. R., Cairns, M. J., Carr, V. J., & Green, M. J. (2014). Multivariate neuroanatomical classification of cognitive subtypes in schizophrenia: a support vector machine learning approach. NeuroImage: Clinical, 6, 229–236.

    Article  Google Scholar 

  42. Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. NeuroImage, 48(1), 63–72.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hayton, T., Furby, J., Smith, K. J., Altmann, D. R., Brenner, R., Chataway, J., et al. (2009). Grey matter magnetization transfer ratio independently correlates with neurological deficit in secondary progressive multiple sclerosis. Journal of Neurology, 256, 427–435.

    CAS  Article  PubMed  Google Scholar 

  44. Honey, C. J., & Sporns, O. (2008). Dynamical consequences of lesions in cortical networks. Human Brain Mapping, 29(7), 802–809.

    Article  PubMed  Google Scholar 

  45. Honey, C. J., Honey, C. J., Kotter, R., Kotter, R., Breakspear, M., Breakspear, M., et al. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. PNAS, 104(24), 10240–10245.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 2035–2040.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Iwabuchi, S. J., & Kirk, I. J. (2014). Association between structural and functional connectivity in the verb generation network. Brain Connectivity, 4(3), 221–229.

    Article  PubMed  Google Scholar 

  48. Janssen, A. L., Boster, A., Patterson, B. A., Abduljalil, A., & Prakash, R. S. (2013). Resting-state functional connectivity in multiple sclerosis: an examination of group differences and individual differences. Neuropsychologia, 51(13), 2918–2929.

    Article  PubMed  Google Scholar 

  49. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17, 825–841.

    Article  PubMed  Google Scholar 

  50. Johnson, D. E. (1998). Applied multivariate methods for data analysts. Pacific Grove: Duxbury Press.

    Google Scholar 

  51. Kalkers, N. F., Polman, C. H., & Uitdehaag, B. M. J. (2001). Measuring clinical disability: the MS functional composite. Int. MSJ, 8(3), 79–87.

    Google Scholar 

  52. Karagkouni, A., Alevizos, M., & Theoharides, T. C. (2013). Effect of stress on brain inflammation and multiple sclerosis. Autoimmunity Reviews, 12(10), 947–953.

    CAS  Article  PubMed  Google Scholar 

  53. Kister, I., Bacon, T. E., Chamot, E., Salter, A. R., Cutter, G. R., Kalina, J. T., & Herbert, J. (2013). Natural history of multiple sclerosis symptoms. International Journal of MS Care, 15(3), 146–158.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular analysis in systems neuroscience: the dangers of double dipping. Nature Neuroscience, 12(5), 535–540.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. LaConte, S., Strother, S., Cherkassky, V., Anderson, J., & Hu, X. (2005). Support vector machines for temporal classification of block design fMRI data. NeuroImage, 26(2), 317–329.

    Article  PubMed  Google Scholar 

  56. Llufriu, S., Blanco, Y., Martinez-Heras, E., Casanova-Molla, J., Gabilondo, I., Sepulveda, M., et al. (2012). Influence of corpus callosum damage on cognition and physical disability in multiple sclerosis: a multimodal study. PloS One, 7(5), 1–7.

    Article  Google Scholar 

  57. Mahmoudi, A., Takerkart, S., Regragui, F., Boussaoud, D., & Brovelli, A. (2012). Multivoxel pattern analysis for fMRI data: A review. Computational and Mathematical Methods in Medicine, 2012, Article ID 961257.

  58. Makris N, Kennedy DN, Meyer J, Worth A, Caviness VS, Jr., Seidman L, Goldstein J, Goodman J, Hoge E, Macpherson C, Tourville J, Klaveness S, Hodge SM, Melrose R, Rauch S, Kim H, Harris G, Boehland A, Glode B, Koch J, Segal E, Sonricker A, Dieterich M, Papadimitriou G, Normandin JJ, Cullen N, Boriel D, Sanders H (2004). Segmentation manual. Center for Morphometric Analysis (CMA), Massachusetts General Hospital (MGH), http://www.cma.mgh.harvard.edu/manuals/segmentation/.

    Google Scholar 

  59. Mallucci, G., Peruzzotti-Jametti, L., Bernstock, J. D., & Pluchino, S. (2015). The role of immune cells, glia and neurons in white and gray matter pathology in multiple sclerosis. Progress in Neurobiology, 127, 1–22.

    Article  PubMed  Google Scholar 

  60. Marzelli, M. J., Hoeft, F., Hong, D. S., & Reiss, A. L. (2011). Neuroanatomical spatial patterns in turner syndrome. NeuroImage, 55(2), 439–447.

    Article  PubMed  Google Scholar 

  61. McDonald, I., & Compston, A. (2006). The symptoms and signs of multiple sclerosis. In A. Compston, G. Ebers, & H. Lassmann (Eds.), McAlpine’s Multiple Sclerosis (4th ed., pp. 287–346). London: Churchill Livingstone.

    Google Scholar 

  62. McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12(2), 153–157.

    CAS  Article  PubMed  Google Scholar 

  63. Minagar, A., Sheremata, W. A., & Weiner, W. J. (2002). Transient movement disorders and multiple sclerosis. Parkinsonism and Related Disorders, 9(2), 111–113.

    Article  PubMed  Google Scholar 

  64. Mink, J. W. (1996). The basal ganglia: focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50(4), 381–425.

    CAS  Article  PubMed  Google Scholar 

  65. Mitchell, A. S., Sherman, S. M., Sommer, M. A., Mair, R. G., Vertes, R. P., & Chudasama, Y. (2014). Advances in understanding mechanisms of thalamic relays in cognition and behavior. The Journal of Neuroscience, 34(46), 15340–15346.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Mourão-Miranda, J., Bokde, A. L. W., Born, C., Hampel, H., & Stetter, M. (2005). Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. NeuroImage, 28(4), 980–995.

    Article  PubMed  Google Scholar 

  67. Mourão-Miranda, J., Reinders, A., Rocha-Rego, V., Lappin, J., Rondina, J., Morgan, C., et al. (2012). Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study. Psychological Medicine, 42, 1037–1047.

    Article  PubMed  Google Scholar 

  68. Müller, K.-R., Krauledat, M., Dornhege, G., Curio, G., & Blankertz, B. (2004). Machine learning techniques for brain-computer interfaces. Biomedizinische Technik, 49, 11–22.

    Article  Google Scholar 

  69. Nantes, J. C., Zhong, J., Holmes, S. A., Whatley, B., Narayanan, S., Lapierre, Y., & Koski, L. M. (2015). Intracortical inhibition abnormality during the remission phase of multiple sclerosis is related to upper limb dexterity and lesions. Clinical Neurophysiology. doi:10.1016/j.clinph.2015.08.011.

    PubMed  Google Scholar 

  70. Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424–430.

    Article  PubMed  Google Scholar 

  71. Nygaard, G. O., Walhovd, K. B., Sowa, P., Chepkoech, J. L., Bjørnerud, A., Due-Tønnessen, P., et al. (2015). Cortical thickness and surface area relate to specific symptoms in early relapsing–remitting multiple sclerosis. Multiple Sclerosis Journal, 21(4), 402–414.

    Article  PubMed  Google Scholar 

  72. Oxford Grice, K., Vogel, K. A., Le, V., Mitchell, A., Muniz, S., & Vollmer, M. A. (2003). Adult norms for a commercially available nine hole peg test for finger dexterity. American Journal of Occupational Therapy, 57(5), 570–573.

    Article  PubMed  Google Scholar 

  73. Ozturk, A., Smith, S. A., Gordon-Lipkin, E. M., Harrison, D. M., Shiee, N., Pham, D. L., et al. (2010). MRI of the corpus callosum in multiple sclerosis: association with disability. Multiple Sclerosis (Houndmills, Basingstoke, England), 16(2), 166–177.

    CAS  Article  Google Scholar 

  74. Pagani, E., Rocca, M. A., Gallo, A., Rovaris, M., Martinelli, V., Comi, G., & Filippi, M. (2005). Regional brain atrophy evolves differently in patients with multiple sclerosis according to clinical phenotype. American Journal of Neuroradiology, 26(2), 341–346.

  75. Parent, A., & Hazrati, L. N. (1995). Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Research Reviews, 20(1), 91–127.

    CAS  PubMed  Google Scholar 

  76. Pariyadath, V., Stein, E. A., & Ross, T. J. (2014). Machine learning classification of resting state functional connectivity predicts smoking status. Frontiers in Human Neuroscience, 8, 1–10.

    Article  Google Scholar 

  77. Ponten, S. C., Daffertshofer, A., Hillebrand, A., & Stam, C. J. (2010). The relationship between structural and functional connectivity: graph theoretical analysis of an EEG neural mass model. NeuroImage, 52(3), 985–994.

    CAS  Article  PubMed  Google Scholar 

  78. Rehme, A. K., Volz, L. J., Feis, D.-L., Bomilcar-Focke, I., Liebig, T., Eickhoff, S. B., et al. (2015). Identifying neuroimaging markers of motor disability in acute stroke by machine learning techniques. Cerebral Cortex, 25(9), 3046–3056.

    CAS  Article  PubMed  Google Scholar 

  79. Richiardi, J., Gschwind, M., Simioni, S., Annoni, J.-M., Greco, B., Hagmann, P., et al. (2012). Classifying minimally disabled multiple sclerosis patients from resting state functional connectivity. NeuroImage, 62(3), 2021–2033.

    Article  PubMed  Google Scholar 

  80. Rocca, M. A., Valsasina, P., Martinelli, V., Misci, P., Falini, A., Comi, G., & Filippi, M. (2012). Large-scale neuronal network dysfunction in relapsing-remitting multiple sclerosis. Neurology, 79(14), 1449–1457.

    Article  PubMed  Google Scholar 

  81. Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 2507–2517.

    CAS  Article  PubMed  Google Scholar 

  82. Schmierer, K., Niehaus, L., Röricht, S., & Meyer, B. U. (2000). Conduction deficits of callosal fibres in early multiple sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry, 68(5), 633–638.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Schmierer, K., Irlbacher, K., Grosse, P., Röricht, S., & Meyer, B. U. (2002). Correlates of disability in multiple sclerosis detected by transcranial magnetic stimulation. Neurology, 59(8), 1218–1224.

    CAS  Article  PubMed  Google Scholar 

  84. Seiss, E., & Praamstra, P. (2004). The basal ganglia and inhibitory mechanisms in response selection: evidence from subliminal priming of motor responses in Parkinson’s disease. Brain, 127(2), 330–339.

    Article  PubMed  Google Scholar 

  85. Siegle, G. J., Thompson, W., Carter, C. S., Steinhauer, S. R., & Thase, M. E. (2007). Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biological Psychiatry, 61(2), 198–209.

    Article  PubMed  Google Scholar 

  86. Smith, S. M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P. M., Federico, A., & De Stefano, N. (2002). Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. NeuroImage, 17(1), 479–489.

    Article  PubMed  Google Scholar 

  87. Sripada, R. K., King, A. P., Garfinkel, S. N., Wang, X., Sripada, C. S., Welsh, R. C., & Liberzon, I. (2012). Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder. Journal of Psychiatry and Neuroscience, 37(4), 241–249.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Stevens, J. S., Jovanovic, T., Fani, N., Ely, T. D., Glover, E. M., Bradley, B., & Ressler, K. J. (2013). Disrupted amygdala-prefrontal functional connectivity in civilian women with posttraumatic stress disorder. Journal of Psychiatric Research, 47(10), 1469–1478.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Vapnik, V. N. (2000). The nature of statistical learning theory (2nd ed.). New York: Springer-Verlag.

    Google Scholar 

  90. Vercellino, M., Masera, S., Lorenzatti, M., Condello, C., Merola, A., Mattioda, A., et al. (2009). Demyelination, inflammation, and neurodegeneration in multiple sclerosis deep gray matter. Journal of Neuropathology and Experimental Neurology, 68(5), 489–502.

    Article  PubMed  Google Scholar 

  91. Wang, X., & Tian, J. (2012). Gene selection for cancer classification using support vector machines. Computational and Mathematical Methods in Medicine, 2012, 586246.

    PubMed  PubMed Central  Google Scholar 

  92. Wang, F., Kalmar, J. H., He, Y., Jackowski, M., Chepenik, L. G., Edmiston, E. E., et al. (2009). Functional and structural connectivity between the Perigenual anterior cingulate and amygdala in bipolar disorder. Biological Psychiatry, 66(5), 516–521.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Warren, S., Greenhill, S., & Warren, K. G. (1982). Emotional stress and the development of multiple sclerosis: case-control evidence of a relationship. Journal of Chronic Disease, 35(11), 821–831.

    CAS  Article  Google Scholar 

  94. Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: a network visualization tool for human brain connectomics. PloS One, 8(7), e68910.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. Yaldizli, Ö., Glassl, S., Sturm, D., Papadopoulou, A., Gass, A., Tettenborn, B., & Putzki, N. (2011). Fatigue and progression of corpus callosum atrophy in multiple sclerosis. Journal of Neurology, 258(12), 2199–2205.

    Article  PubMed  Google Scholar 

  96. Yozbatiran, N., Baskurt, F., Baskurt, Z., Ozakbas, S., & Idiman, E. (2006). Motor assessment of upper extremity function and its relation with fatigue, cognitive function and quality of life in multiple sclerosis patients. Journal of the Neurological Sciences, 246(1–2), 117–122.

    Article  PubMed  Google Scholar 

  97. Zar, J. H. (2010). Biostatistical analysis. New Jersey USA: Prentice Hall.

    Google Scholar 

  98. Zeng, L.-L., Shen, H., Liu, L., & Hu, D. (2014). Unsupervised classification of major depression using functional connectivity MRI. Human Brain Mapping, 35(4), 1630–1641.

    Article  PubMed  Google Scholar 

  99. Zito, G., Luders, E., Tomasevic, L., Lupoi, D., Toga, A. W., Thompson, P. M., et al. (2014). Inter-hemispheric functional connectivity changes with corpus callosum morphology in multiple sclerosis. Neuroscience, 266, 47–55.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Zivadinov, R., Reder, A. T., Filippi, M., Minagar, A., Stüve, O., Lassmann, H., et al. (2008). Mechanisms of action of disease-modifying agents and brain volume changes in multiple sclerosis. Neurology, 71(2), 136–144.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Douglas Arnold, Dr. David Araujo, Serge Gallant, Dr. Elena Lebedeva, Afiqua Yusef, Ben Whatley, Rebecca Sussex, Haz-Edine Assemlal, Dr. Kunio Nakamura and Stanley Hum for their contributions to data collection and processing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jidan Zhong.

Ethics declarations

Funding

This study was funded by the Canadian Institutes of Health Research (grant number: MOP119428), and by the Research Institute of the McGill University Health Centre.

Conflict of interest

Author Jidan Zhong, Author David Qixiang Chen, Author Julia C. Nantes, Author Scott A. Holmes, Author Mojgan Hodaie and Author Lisa Koski declare no conflicts of interest.

Ethical approval

This study was approved by the Research Ethics Board of the Montreal Neurological Institute and Hospital. All procedures performed in this study involving human participants were in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Chen, D.Q., Nantes, J.C. et al. Combined structural and functional patterns discriminating upper limb motor disability in multiple sclerosis using multivariate approaches. Brain Imaging and Behavior 11, 754–768 (2017). https://doi.org/10.1007/s11682-016-9551-4

Download citation

Keywords

  • Cortical thickness
  • Deep grey matter volume
  • Functional connectivity
  • Motor disability
  • Multiple sclerosis
  • Multivariate analysis
  • Support vector machine