Early Life Stress on Brain Structure and Function Across the Lifespan: A Preliminary Study

  • Donna L. Seckfort
  • Robert PaulEmail author
  • Stuart M. Grieve
  • Brian Vandenberg
  • Richard A. Bryant
  • Leanne M. Williams
  • C. Richard Clark
  • Ronald A. Cohen
  • Steven Bruce
  • Evian Gordon


Previous studies have shown that exposure to early life stress (ELS) is associated with reduced volume of brain regions critical for information processing, memory and emotional function. Further, recent studies from our lab utilizing diffusion tensor imaging (DTI) have found alterations in the microstructural integrity of white matter pathways among adults exposed to ELS. However, it is not clear if these relationships extend to children and adolescents, and it is also unclear if these DTI abnormalities are associated with cognitive performance. The present study examined the relationship between ELS and the microstructural integrity of the corpus callosum among a sample of otherwise healthy controls between the ages of 8 and 73. The participants were subdivided into four age groups (8–12, 13–18, 19–50, 51–73). Individuals with three or more ELS events were compared to individuals with fewer than 3 ELS events on fractional anisotropy (FA) in the genu of the corpus callosum. Separate analyses examined the two groups on tests of verbal memory, information processing speed, psychomotor speed and cognitive flexibility. Results revealed that the youngest group and the oldest group of individuals with ELS exhibited significantly lower FA in the genu compared to individuals without ELS. However, there were no group differences on any of the cognitive tasks. Our results indicate that ELS is related to subtle alterations in brain structure, but not function. The effects found with regard to DTI occurred during periods of critical age-related developmental windows.


Early-life stress Cognition Diffusion tensor imaging Corpus callosum Age 


  1. Andersen, S. L., & Teicher, M. H. (2004). Delayed effects of early stress on hippocampal development. Neuropsychopharmacology, 29, 1988–1993.PubMedCrossRefGoogle Scholar
  2. Brandes, D., Ben-Schachar, G., Gilboa, A., Bonne, O., Freedman, S., & Shalev, A. Y. (2002). PTSD symptoms and cognitive performance in recent trauma survivors. Psychiatry Research, 110(3), 231–238.PubMedCrossRefGoogle Scholar
  3. Brunson, K. L., Kramar, E., Lin, B., Chen, Y., Colgin, L. L., Yanagihara, K., et al. (2005). Mechanisms of late-onset cognitive decline after early-life stress. The Journal of Neuroscience, 25(41), 9328–9338.PubMedCrossRefGoogle Scholar
  4. Clark, C. R., Paul, R. H., Williams, L. M., Arns, M., Fallahpour, K., Handmer, C., et al. (2006). Standardized assessment of cognitive functioning during development and aging using an automated touchscreen battery. Archives of Clinical Neuropsychology, 21, 449–467.PubMedCrossRefGoogle Scholar
  5. Cohen, R. A., Grieve, S., Hoth, K. F., Paul, R. H., Sweet, L., Tate, D., et al. (2006a). Early life stress and morphometry of the adult anterior cingulate cortex and caudate nuclei. Biological Psychiatry, 59, 975–982.PubMedCrossRefGoogle Scholar
  6. Cohen, R. A., Hitsman, B. L., Paul, R. H., McCaffery, J., Stroud, L., Sweet, L., et al. (2006b). Early life stress and adult emotional experience: An international perspective. International Journal of Psychiatry in Medicine, 36(1), 35–52.PubMedCrossRefGoogle Scholar
  7. Geffen, G. M., Moar, K. J., Hanlon, A. P., Clark, C. R., & Geffen, L. B. (1990). Performance measures of 16- to 86-year old males and females on the Auditory Verbal Learning test. The Clinical Neuropsychologist, 4, 45–63.CrossRefGoogle Scholar
  8. Goethals, I., Audenaert, K., Van De Wiele, C., & Dierckx, R. (2003). The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks. European Journal of Nuclear Medicine and Molecular Imaging, 31(3), 408–416.PubMedCrossRefGoogle Scholar
  9. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. PNAS, 101(21), 8174–8179.PubMedCrossRefGoogle Scholar
  10. Gordon, E., Cooper, N., Rennie, C., Hermens, D., & Williams, L. M. (2005). Integrative neuroscience: The role of a standardized database. Clinical EEG and Neuroscience, 36(2), 64–75.PubMedGoogle Scholar
  11. Graham, J. E., Christian, L. M., & Kiecolt-Glaser, J. K. (2006). Stress, age, and immune function: Toward a lifespan approach. Journal of Behavioral Medicine, 29(4), 389–400.PubMedCrossRefGoogle Scholar
  12. Grieve, S. M., Williams, L. M., Paul, R. H., Clark, C. R., & Gordon, E. (2007). Cognitive aging, executive function, and fractional anisotropy: A diffusion tensor MR imaging study. American Journal of NeuroRadiology, 28, 226–235.PubMedGoogle Scholar
  13. Gunnar, M., & Quevedo. K. (2006). The neurobiology of stress and development. Annual Review of Psychology[online]. Accessed 29 September 2006. URL:
  14. Halstead, W. C. (1947). Brain and intelligence. Chicago: University of Chicago Press.Google Scholar
  15. Hicki, I. (1998). SPHERE: A National Depression Project. Australasian Psychiatry, 6, 248–250.CrossRefGoogle Scholar
  16. Lezak, M. (2004). Neuropsychological assessment. New York: OUP.Google Scholar
  17. Lindauer, R. J. L., Olff, M., van Meijel, E. P. M., Carlier, I. V. E., & Gersons, B. P. R. (2006). Cortisol, learning, memory, and attention in relation to smaller hippocampal volume in police officers with posttraumatic stress disorder. Biological Psychiatry, 59(2), 171–177.PubMedCrossRefGoogle Scholar
  18. Lovibond, P., & Lovibond, S. (1995). The structure of negative emotional sates: comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Journal of Beaviour Research Therapy, 33, 335–343.CrossRefGoogle Scholar
  19. Macklin, M. L., Metzger, L. J., Litz, B. T., et al. (1998). Lower precombat intelligence is a risk factor for posttraumatic stress disorder. Journal of Consulting and Clinical Psychology, 66(2), 323–326.PubMedCrossRefGoogle Scholar
  20. McFarlane, A., Clark, C. R., Bryant, R. A., Williams, L. M., Niaura, R., Paul, R. H., et al. (2005). The impact of early life stress on psychophysiological, personality and behavioral measures in 740 non-clinical subjects. Journal of Integrative Neuroscience, 4(1), 27–40.PubMedCrossRefGoogle Scholar
  21. McNally, R. J., & Shin, L. M. (1995). Association of intelligence with severity of posttraumatic stress disorder symptoms in Vietnam combat veterans. American Journal of Psychiatry, 152(6), 936–938.PubMedGoogle Scholar
  22. Milner, B. (1970). Memory and the medial temporal regions of the brain. Biology of memory. New York: Academic Press.Google Scholar
  23. Moradi, A. R., Neshat Doost, H. T., Taghavi, M. R., Yule, W., & Dalgleish, T. (1999). Everyday memory deficits in children and adolescents with PTSD: Performance on the Rivermead Behavioural Memory Test. Journal of Child Psychology, 40(3), 357–361.CrossRefGoogle Scholar
  24. Neil, J., Miller, J., Mukherjee, P., & Huppi, P. S. (2002). Diffusion tensor imaging of normal and injured developing human brain: A technical review. NMR Biomedicine, 15, 543–552.CrossRefGoogle Scholar
  25. Paul, R., Henry, L., Grieve, S. M., Guilmete, T. J., Niaura, R., Bryant, R., et al. (2007). The relationship between early life stress and microstructural integrity of the corpus callosum in a non-clinical population. Neuropsychiatric Disease and Treatment (in press).Google Scholar
  26. Paul, R. H., Lawrence, J., Williams, L. M., Richard, C. C., Cooper, N., & Gordon, E. (2005). Preliminary validity of “integneuro”: a new computerized battery of neurocognitive tests. International Journal of Neuroscience, 115, 1549–1567.PubMedCrossRefGoogle Scholar
  27. Perez, C. M., & Widom, C. S. (1994). Childhood victimization and long-term intellectual and academic outcomes. Child Abuse & Neglect, 18(8), 617–633.CrossRefGoogle Scholar
  28. Porter, J., Lawson, J. S., & Bigler, E. D. (2005). Neurobehavioral sequelae of childhood sexual abuse. Child Neuropsychology, 11, 203–220.PubMedCrossRefGoogle Scholar
  29. Reitan, R. M. (1955). The relation of the Trail Making test to organic brain damage. Journal of Consultation Psychology, 5, 393–394.CrossRefGoogle Scholar
  30. Reitan, R. M. (1958). Validity of the Trail Making test as a indicator of organic brain damage. Perceptual & Motor Skills, 8, 271–276.CrossRefGoogle Scholar
  31. Salat, D. H., Tuch, D. S., Greve, D. N., van der Kouwe, A. J. W., Hevelone, N. D., Zaleta, A. K., et al. (2005). Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiology of Aging, 26, 1215–1227.PubMedCrossRefGoogle Scholar
  32. Sanders, B., & Becker-Lausen, E. (1995). The measurement of psychological maltreatment. Child Abuse and Neglect, 19, 315–323.PubMedCrossRefGoogle Scholar
  33. Sapolsky, R. M. (2000). Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. General Psychiatry, 57(10), 925–935.CrossRefGoogle Scholar
  34. Snook, L., Paulson, L., Roy, D., Phillips, L., & Beaulieu, C. (2005). Diffusion tensor imaging of neurodevelopment in children and young adults. NeuroImage, 26, 1164–1173.PubMedCrossRefGoogle Scholar
  35. Stein, M. B., Hanna, C., Vaerum, V., & Koverola, C. (1999). Memory functioning in adult women traumatized by childhood sexual abuse. Journal of Traumatic Stress, 12(3), 527–534.PubMedCrossRefGoogle Scholar
  36. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.CrossRefGoogle Scholar
  37. Sullivan, E., & Pfefferbaum, A. (2006). Diffusion tensor imaging and aging. Neuroscience and Biobehavioral Reviews, 30, 749–761.PubMedCrossRefGoogle Scholar
  38. Teicher, M. H., Dumont, N. L., Ito, Y., Vaituzis, C., Giedd, J. N., & Andersen, S. L. (2004). Childhood neglect is associated with reduced corpus callosum area. Biological Psychiatry, 56(2), 80–85.PubMedCrossRefGoogle Scholar
  39. Toga, A. W., Thompson, P. M., & Sowell, E. R. (2006). Mapping brain maturation. Trends in Neurosciences, 29(3), 148–158.PubMedCrossRefGoogle Scholar
  40. Williams, L. J., Paul, R. H., Lawrence, J., Clark, C. R., Cooper, N., & Gordon, G. (2005). The test-retest reliability a Standardized Neurocognitive and Neurophysiological test battery: “Neuromarker”. International Journal of Neuroscience, 115(12), 1605–1630.PubMedCrossRefGoogle Scholar
  41. Yasik, A. E., Saigh, P. A., Oberfield, R. A., & Halamandaris, P. V. (2007). Posttraumatic stress disorder: Memory and learning performance in children and adolescents. Biological Psychiatry, 61(3), 382–388.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Donna L. Seckfort
    • 1
  • Robert Paul
    • 1
    Email author
  • Stuart M. Grieve
    • 2
  • Brian Vandenberg
    • 1
  • Richard A. Bryant
    • 3
  • Leanne M. Williams
    • 4
  • C. Richard Clark
    • 5
  • Ronald A. Cohen
    • 6
  • Steven Bruce
    • 1
  • Evian Gordon
    • 2
    • 4
  1. 1.Department of PsychologyUniversity of Missouri, St. LouisSt. LouisUSA
  2. 2.The Brain Resource International DatabaseThe Brain Resource CompanyUltimoAustralia
  3. 3.School of PsychologyUniversity of New South WalesSydneyAustralia
  4. 4.Brain Dynamics CentreWestmead Millenium Institute, Psychological Medicine, Western Clinical School, University of SydneySydneyAustralia
  5. 5.Cognitive Neuroscience Laboratory and School of PsychologyFlinders UniversityAdelaideAustralia
  6. 6.Department of Psychiatry and Human BehaviorBrown Medical SchoolProvidenceUSA

Personalised recommendations