Skip to main content

Advertisement

Log in

White Matter Correlates of Cognitive Capacity Studied With Diffusion Tensor Imaging: Implications for Cognitive Reserve

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Cognitive reserve (CR) is a theoretical concept used to explain and study individual differences in cognitive symptom expression in neurological disease. In the absence of neurologic injury or demands on processing, compensatory and protective factors may be considered to represent cognitive capacity (CC), rather than cognitive reserve, per se. We studied the white matter structural correlates of CC in 51 young, healthy participants. White matter structural correlates were obtained from fractional anisotropy (FA) measures using diffusion tensor imaging (DTI). CC was represented by intelligence, reading ability, and years of education, commonly used measures for studying CR. CC was positively correlated with FA in the right posterior inferior longitudinal fasciculus. We observed gender differences in FA (males > females) and tested for gender differences in FA correlates of CC. However, the interaction between gender and CC for areas of FA was not significant. Our data indicate that in the healthy young brain, greater CC correlates with higher FA values in a focal area that does not significantly differ by gender.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe, O., Aoki, S., Hayashi, N., Yamada, H., Kunimatsu, A., Mori, H., et al. (2002). Normal aging in the central nervous system: Quantitative MR diffusion-tensor analysis. Neurobiology of Aging, 23, 433–441.

    Article  PubMed  Google Scholar 

  • Andreasen, N. C., Flaum, M., Swayze, V., 2nd, O’Leary, D. S., Alliger, R., Cohen, G., et al. (1993). Intelligence and brain structure in normal individuals. American Journal of Psychiatry, 150, 130–134.

    PubMed  CAS  Google Scholar 

  • Backman, L., Andersson, J. L., Nyberg, L., Winblad, B., Nordberg, A., & Almkvist, O. (1999). Brain regions associated with episodic retrieval in normal aging and Alzheimer’s disease. Neurology, 52, 1861–1870.

    PubMed  CAS  Google Scholar 

  • Becker, J. T., Mintun, M. A., Hleva, K., Wiseman, M. B., Nichols, T., & Dekosky, S. T. (1996). Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer’s disease. Neurology, 46, 692–700.

    PubMed  CAS  Google Scholar 

  • Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage, 17, 1394–1402.

    Article  PubMed  Google Scholar 

  • Coffey, C. E., Saxton, J. A., Ratcliff, G., Bryan, R. N., & Lucke, J. F. (1999). Relation of education to brain size in normal aging: implications for the reserve hypothesis. Neurology, 53, 189–196.

    PubMed  CAS  Google Scholar 

  • Cox, R. (1996). AFNI: Sofware for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.

    Article  PubMed  CAS  Google Scholar 

  • Deary, I. J., Bastin, M. E., Pattie, A., Clayden, J. D., Whalley, L. J., Starr, J. M., et al. (2006). White matter integrity and cognition in childhood and old age. Neurology, 66, 505–512.

    Article  PubMed  CAS  Google Scholar 

  • Flashman, L. A., Andreasen, N. C., Flaum, M., & Swayze, V. W. (1997). Intelligence and regional brain volumes in normal controls. Intelligence, 25, 149–160.

    Article  Google Scholar 

  • Frangou, S., Chitins, S., & Williams, S. C. R. (2004). Mapping IQ and gray matter density in healthy young people. NeuroImage, 23, 800–805.

    Article  PubMed  Google Scholar 

  • Gong, Q. Y., Sluming, V., Mayes, A., Keller, S., Barrick, T., Cezayirli, E., et al. (2005). Voxel-based morphometry and stereology provide convergent evidence of the importance of medial prefrontal cortex for fluid intelligence in healthy adults. Neuroimage, 25, 1175–1186.

    Article  PubMed  Google Scholar 

  • Grossman, M., Cooke, A., Devita, C., Alsop, D., Detre, J., Chen, W., et al. (2002). Age-related changes in working memory during sentence comprehension: an fMRI study. Neuroimage, 15, 302–317.

    Article  PubMed  Google Scholar 

  • Gur, R. C., Turetsky, B. I., Matsui, M., Yan, M., Bilker, W., Hughett, P., et al. (1999). Sex differences in brain gray and white matter in healthy young adults: Correlations with cognitive performance. Journal of Neuroscience, 19, 4065–4072.

    PubMed  CAS  Google Scholar 

  • Habeck, C., Hilton, H. J., Zarahn, E., Flynn, J., Moeller, J., & Stern, Y. (2003). Relation of cognitive reserve and task performance to expression of regional covariance networks in an event-related fMRI study of nonverbal memory. NeuroImage, 20, 1723–1733.

    Article  PubMed  Google Scholar 

  • Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2004). Structural brain variation and general intelligence. NeuroImage, 23, 425–433.

    Article  PubMed  Google Scholar 

  • Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2005). The neuroanatomy of general intelligence: Sex matters. NeuroImage, 25, 320–327.

    Article  PubMed  Google Scholar 

  • Haut, M. W., Kuwabara, H., Ducatman, A. M., Hatfield, G., Parsons, M. W., Scott, A., et al. (2006). Corpus Callosum Volume in Railroad Workers with Chronic Exposure to Solvents. Journal of Occupational and Environmental Medicine, 48, 615–624.

    Article  PubMed  Google Scholar 

  • Haut, M. W., Kuwabara, H., Leach, S., & Callahan, T. (2000). Age-related changes in neural activation during working memory performance. Aging Neuropsychology and Cognition, 7, 119–129.

    Article  Google Scholar 

  • Helmstaeder, C., & Kockelmann, E. (2006). Cognitive outcomes in patients with chronic temporal lobe epilepsy. Epilepsia, 47(Suppl. 2), 96–98.

    Article  Google Scholar 

  • Huisman, T. A., Loenneker, T., Barta, G., Bellemann, M. E., Hennig, J., Fischer, J. E., et al. (2006). Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars. European Radiology, 16, 1651–1658.

    Article  PubMed  Google Scholar 

  • Johnstone, B., & Wilhelm, K. L. (1996). The longitudinal stability of the WRAT-R Reading subtest: is it an appropriate estimate of premorbid intelligence? Journal of the International Neuropsychological Society, 2, 282–285.

    Article  PubMed  CAS  Google Scholar 

  • Jung, R. E., Haier, R. J., Yeo, R. A., Rowland, L. M., Petropoulos, H., Levine, A. S., et al. (2005). Sex differences in N-acetylaspartate correlates of general intelligence: An H-MRS study of normal human brain. NeuroImage, 26, 965–972.

    Article  PubMed  Google Scholar 

  • Kesler, S. R., Adams, H. F., Blasey, C. M., & Bigler, E. D. (2003). Premorbid intellectual functioning, education, and brain size in traumatic brain injury: an investigation of the cognitive reserve hypothesis. Applied Neuropsychology, 10, 153–162.

    Article  PubMed  Google Scholar 

  • Luders, E., Narr, K. L., Thompson, P. M., Rex, D. E., Jancke, L., Steinmetz, H., et al. (2004). Gender differences in cortical complexity. Nature Neuroscience, 7, 799–800.

    Article  PubMed  CAS  Google Scholar 

  • Nebes, R. D., Meltzen, C. C., Whyte, E. M., Scanlon, J. M., Halligan, E. M., Saxton, J. A., et al. (2006). The relation of white matter hyperintensities to cognitive performance in the normal old: age matters. Aging Neuropsychology and Cognition, 13, 326–340.

    Article  Google Scholar 

  • Nelson, H. E., & O’Connell, A. (1978). Dementia: the estimation of premorbid intelligence levels using the New Adult Reading Test. Cortex, 14, 234–244.

    PubMed  CAS  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113.

    Article  PubMed  CAS  Google Scholar 

  • Pfefferbaum, A., Adalsteinsson, E., & Sullivan, E. V. (2005). Frontal circuitry degradation marks healthy adult aging: Evidence from diffusion tensor imaging. NeuroImage, 26, 891–899.

    Article  PubMed  Google Scholar 

  • Pfleiderer, B., Ohrmann, P., Suslow, T., Wolgast, M., Gerlach, A. L., Heindel, W., et al. (2004). N-acetylaspartate levels of left frontal cortex are associated with verbal intelligence in women but not men: A proton magnetic resonance spectroscopy study. Neuroscience, 123, 1053–1058.

    Article  PubMed  CAS  Google Scholar 

  • Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., et al. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral Cortex, 15, 1676–1689.

    Article  PubMed  Google Scholar 

  • Salat, D. H., Tuch, D. S., Greve D. N., van der Kouwe, A. J. W., Hevelone N. D., Zaleta A. K., et al. (2005). Age-related alterations in whtie matter microstrucutre measured by diffusion tensor imaging. Neurobiology of Aging, 26, 1215–1227.

    Article  PubMed  CAS  Google Scholar 

  • Satz, P. (1993). Brain reserve capacity on symptom onset after brain injury: a formulation and review of evidence for threshold theory. Neuropsychology, 7, 273–295.

    Article  Google Scholar 

  • Scarmeas, N., Zarahn, E. Anderson, K. E., Habeck, C. G., Hilton, J., Flynn, J., et al. (2003a). Association of life activities with cerebral blood flow in Alzheimer disease: implications for the cognitive reserve hypothesis. Archives of Neurology, 60, 359–365.

    Article  PubMed  Google Scholar 

  • Scarmeas, N., Zarahn, E., Anderson, K. E., Hilton, J., Flynn, J., Van Heertum, R. L., et al. (2003b). Cognitive reserve modulates functional brain responses during memory tasks: a PET study in healthy young and elderly subjects. NeuroImage, 19, 1215–1227.

    Article  PubMed  Google Scholar 

  • Scarmeas, H., Zarahn, E., Anderson, K. E., Honig, L. S., Park, A., Hilton, J., et al. (2004). Cognitive reserve-mediated modulation of positron emission tomographic activations during memory tasks in Alzheimer disease. Archives of Neurology, 61, 73–78.

    Article  PubMed  Google Scholar 

  • Schmithorst, V. J., Holland, S. K., & Dardzinski, B. J. (2007). Developmental differences in white matter architecture between boys and girls. Human Brain Mapping, DOI 10.1002/hbm.20431.

  • Schmithorst, V. J., Wilke, M., Dardzinski, B. J., & Holland, S. K. (2005). Cognitive functions correlate with white matter architecture in a normal pediatric population: A diffusion tensor MRI study. Human Brain Mapping, 26, 139–147.

    Article  PubMed  Google Scholar 

  • Shenkin, S. D., Bastin, M. E., MacGillivray, T. J., Deary, I. J., Starr, J. M., & Wardlaw, J. M. (2003). Childhood and current cognitive function in healthy 80-year-olds: a DT-MRI study. NeuroReport, 14, 345–349.

    Article  PubMed  Google Scholar 

  • Shin, Y. W., Kim, D. J., Hyon, T., Park, H. J., Moon, W. J., Chung, E. C., et al. (2005). Sex differences in the human corpus callosum: diffusion tensor imaging study. NeuroReport, 16, 795–798.

    Article  PubMed  Google Scholar 

  • Staff, R. T., Murray, A. D., Deary, I. J., & Whalley, L. J. (2004). What provides cerebral reserve? Brain, 127, 1191–1199.

    Article  PubMed  Google Scholar 

  • Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8, 448–460.

    Article  PubMed  Google Scholar 

  • Stern, Y., Zarahn, E., Hilton, H. J., Flynn, J., DeLaPaz, R., & Rakitin, B. (2003). Exploring the neural basis of cognitive reserve. Journal of Clinical and Experimental Neuropsychology, 25, 691–701.

    Article  PubMed  Google Scholar 

  • Sullivan, E. V., Adalsteinsson, E., Hedehus, M, Ju, C., Moseley, M., & Lim, K. O. (2001). Equivalent disruption of regional white matter microstructure in ageing healthy men and women. NeuroReport, 12, 99–104.

    Article  PubMed  CAS  Google Scholar 

  • Szeszko, P. R., Vogel, J., Ashtari, M., Malhotra, A. K., Bates, J., Kane, J. M., et al. (2003). Sex differences in frontal lobe white matter microstructure: a DTI study. NeuroReport, 14, 2469–2473.

    Article  PubMed  Google Scholar 

  • Ulug, A. M., & van Zijl, P. C. (1999). Orientation-independent diffusion imaging without tensor diagonalization: anisotropy definitions based on physical attributes of the diffusion ellipsoid. Journal of Magnetic Resonance Imaging, 9, 804–813.

    Article  PubMed  CAS  Google Scholar 

  • Wechsler, D. A. (1981). Wechser Adult Intelligence Scale–Revised. New York: Psychological Corporation.

  • Wechsler, D. A. (1997). WAIS-III, WMS-III Technical Manual. San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  • Westerhausen, R., Kreuder, F., Sequeira, S. D. S., Walter, C., Woerner, W., Wittling, R. A., et al. (2004). Effects of handedness and gender on macro- and microstructure of the corpus callosum and its subregions: a combined high-resolution and diffusion-tensor MRI study. Brain Research: Cognitive Brain Research, 21, 418–426.

    Article  PubMed  Google Scholar 

  • Westerhausen, R., Walter, C., Krueder, F., Wittling, R. A., Schwiger, E., & Wittling, W. (2003). The influence of handedness and gender on the microstructure of the human corpus callosum: A diffusion-tensor magnetic resonance imaging study. Neuroscience Letters, 351, 99–102.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, G. S. (1993). Wide Range Achievement Test Administration Manual. Wilmington, DE: Wide Range, Inc.

    Google Scholar 

  • Willerman, L., Schultz, R., Rutledge J. N., & Bigler, E. D. (1991). In vivo brain size and intelligence. Intelligence, 15, 223–228.

    Article  Google Scholar 

Download references

Acknowledgement

We thank Ms. Mary Pettit for editorial assistance and the Department of Radiology, West Virginia University for providing financial support for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc W. Haut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haut, M.W., Moran, M.T., Lancaster, M.A. et al. White Matter Correlates of Cognitive Capacity Studied With Diffusion Tensor Imaging: Implications for Cognitive Reserve. Brain Imaging and Behavior 1, 83–92 (2007). https://doi.org/10.1007/s11682-007-9008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-007-9008-x

Keywords

Navigation